Skip to main content

Advertisement

Log in

Effect of ZnS and PbS shell on mem-behavior of CdS quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a systematic study is carried out on mem-behavior of CdS, CdS@ZnS, and CdS@PbS core–shell nanocomposites with emphasis on the effect of ZnS and PbS shell on mem-behavior of CdS quantum dots. From X-ray diffraction, the CdS quantum dots are found to be hexagonal in nature with average crystallite size ~ 10.3 nm. From high-resolution transmission electron microscope images, the particle size is calculated around 3–4 nm for CdS quantum dots. For core–shell nanoparticles, formation of epitaxial shell layer on CdS core is clearly evident with enhancement in particle sizes. Active layer of as-synthesized samples is deposited on Indium tin oxide-coated glass which is used as one electrode. Aluminium is used as counter electrode and deposited over the active layer using thermal evaporation technique. The fabricated devices show bipolar switching characteristics with prominent hysteresis loops. The current–voltage characteristics of the devices show memristive, memcapacitive, and meminductive behavior depending on the type of active layer used. It is also observed that the inclusion of ZnS and \(\mathrm{PbS}\) shell significantly alters the mem-behavior of the CdS quantum dots which is the major finding of this study. The conduction through the device is found to be due to coulomb blockade which also supports the ON/OFF switching mechanism. The sensitivity of the devices can be determined from RON/ROFF ratio, and it is found to be higher for CdS@ZnS core–shell nanoparticles compared to CdS quantum dots and CdS@PbS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CdS:

Cadmium sulphide

ZnS:

Zinc sulphide

PbS:

Lead sulphide

ZnO:

Zinc oxide

CdSe:

Cadmium selenide

Fe2O3 :

Ferric oxide

R :

Resistor

L :

Inductor

C :

Capacitor

PVA:

Polyvinyl alcohol

q :

Charge

Φ :

Magnetic flux

Cu:

Copper

ITO:

Indium tin oxide

Al:

Aluminium

PVP:

Polyvinylpyrrolidone

QDs:

Quantum dots

XRD:

X-ray diffraction

UV–Vis:

Ultra violet–visible spectroscopy

PL:

Photoluminescence spectroscopy

FWHM:

Full width at half maximum

HRTEM:

High-resolution transmission electron microscopy

SAED:

Selected area electron diffraction

EDS:

Energy-dispersive X-ray spectroscopy

AFM:

Atomic force microscopy

MR:

Memristive

MC:

Memcapacitive

MI:

Meminductive

MEF:

Memristor efficiency factor

HRS:

High resistance region

LRS:

Low resistance region

HWO:

Hysteresis width at ‘0V’

CB:

Coulomb blockade

RT:

Resonant tunneling

NDR:

Negative differential resistance

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  CAS  Google Scholar 

  3. A. Priyadharsan, S. Shanavas, C. Vidya, J. Kalyana Sundar, R. Acevedo, P.M. Anbarasan, Mater. Today 26, 3522–3525 (2019)

    Google Scholar 

  4. F. Flory, L. Escoubas, G. Berginc, J. of Nanophotonics 5(1), 052502 (2011)

    Article  Google Scholar 

  5. P. Christian, F. Von der Kammer, M. Baalousha, T. Hofmann, Ecotoxicology 17(5), 326–343 (2008)

    Article  CAS  Google Scholar 

  6. E.S. Kannan, G.H. Kim, D.A. Ritchie, J. Phys. D 43, 225101 (2010)

    Article  Google Scholar 

  7. M. Russ, A. Lorke, D. Reuter, P. Schafmeister, Physica E 22, 506 (2004)

    Article  CAS  Google Scholar 

  8. H. Das, P. Datta, J. Exp, Nanoscience 11(11), 901–915 (2016)

    CAS  Google Scholar 

  9. T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.-J. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, J. Cheon, Nano Lett. 9, 2229–2233 (2009)

    Article  CAS  Google Scholar 

  10. R. Bhadra, P. Datta, K.C. Sharma, J. Dispers. Sci. Technol. 29(8), 1138–1142 (2008)

    Article  CAS  Google Scholar 

  11. S. Sarma, B.M. Mothudi, M.S. Dhlamini, J. Mater. Sci. 27, 4551–4558 (2016)

    CAS  Google Scholar 

  12. P. Cheng, K. Sun, Y.H. Hu, Nano Lett. 16, 572–576 (2016)

    Article  CAS  Google Scholar 

  13. S. Chakrabarti, A.J. Pal, Nanoscale 7, 9886–9893 (2015)

    Article  CAS  Google Scholar 

  14. Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)

    Article  CAS  Google Scholar 

  15. A. Younis, D. Chu, Xi. Lin, J. Yi, F. Dang, S. Li, ACS Appl. Mater. Interfaces 5, 2249–2254 (2013)

    Article  CAS  Google Scholar 

  16. J. Devi, B. Das, S. Sarma, P. Datta, Indian J. Phys. 92, 1541–1550 (2018)

    Article  CAS  Google Scholar 

  17. L.Q. Jiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. 4, 4522 (2014)

    Google Scholar 

  18. Do Hyeong Kim, Chaoxing Wu, Dong Hyun Park, Woo Kyum Kim, Hae WoonSeo, Sang Wook Kim and Tae Whan Kim. ACS Appl. Mater. Interfaces 10(17), 14843–14849 (2018)

    Article  Google Scholar 

  19. J. Guo, S. Guo, X. Su, S. Zhu, Y. Pang, W. Luo, J. Zhang, H. Sun, H. Li, D. Zhang, ACS Appl Electron. Mater 2(3), 817–837 (2020)

    Article  Google Scholar 

  20. F. Alibart, L. Gao, B.D. Hoskins, D.B. Strukov, Nanotechnology 23, 075201 (2012)

    Article  Google Scholar 

  21. E. Goi, Q. Zhang, Xi. Chen, H. Luan, Gu. Min, PhotoniX 1, 3 (2020)

    Article  Google Scholar 

  22. Fu. Tianda, X. Liu, H. Gao, J.E. Ward, X. Liu et al., Nat. Commun. 11, 1861 (2020)

    Article  Google Scholar 

  23. Y. Hiruma, K. Yoshikawa, M.-A. Haga, Faraday Discuss 213, 99–113 (2019)

    Article  CAS  Google Scholar 

  24. V.K. Sangwan, M.C. Hersam, Nat. Nanotechnol. 15, 517–528 (2020)

    Article  CAS  Google Scholar 

  25. Y. Wang, Yu. Liutao, Wu. Si, Ru. Huang, Y. Yang, Adv. Intell. Syst. 2, 2000001 (2020)

    Article  Google Scholar 

  26. B. Das, J. Devi, P.K. Kalita, P. Datta, J. Mater. Sci. 29, 546–557 (2018)

    CAS  Google Scholar 

  27. D. Das, A.M.P. Hussain, Appl. Phys. A 125, 826 (2019)

    Article  Google Scholar 

  28. P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918)

    Google Scholar 

  29. J. Joo, H.B. Na, T. Yu, J.H. Yu et al., J. Am. Chem. Soc. 125(36), 11100–11105 (2003)

    Article  CAS  Google Scholar 

  30. L.-W. Liu, S.-Y. Hu, Y. Pan, J.Q. Zhang et al., Beilstein J. Nanotechnol. 5, 919–926 (2014)

    Article  Google Scholar 

  31. J. Mooney, M.M. Krause, J.I. Saari, P. Kambhampati, J. Chem. Phys. 138, 204705 (2013)

    Article  Google Scholar 

  32. D.R. Baker, P.V. Kamat, Langmuir 26, 11272 (2010)

    Article  CAS  Google Scholar 

  33. J. Tauc, Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  CAS  Google Scholar 

  34. S.D. Birajdar, A.B. Shinde, G.B. Kadam, P.M. Kshirsagar, M.N. Sarnaik, IJARBAS 2(1), 74–77 (2015)

    Google Scholar 

  35. P.K. Kalita, B. Das, R. Devi, J. Pure Appl. Chem. 4, 97–107 (2014)

    Google Scholar 

  36. N.S.M. Hadisa, A.A. Manafa, S.H. Ngalimc, S.H. Hermand, Sens Bio Sens Res 14, 21–29 (2017)

    Article  Google Scholar 

  37. D.Y. Yun, T.W. Kim, S.W. Kim, Thin Solid Films 544, 433–436 (2013)

    Article  CAS  Google Scholar 

  38. M.D. Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 9, 1717 (2009)

    Article  Google Scholar 

  39. S. Choi, P. Sheridan, W.D. Lu, Data Sci. Rep. 5, 10492 (2015)

    Article  Google Scholar 

  40. T. Chang, S.H. Jo, K.-H. Ki, P. Sheridan, S. Gaba, W. Lu, Appl. Phys. A 102, 857–863 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CIF, Gauhati University for providing SEM and EDS analysis, SAIF, NEHU, Shillong for providing HRTEM and SAED facilities, CSR Indore Centre for AFM characterization, and SAIF Gauhati University for providing XRD facilities. The authors are grateful to the Energy, Emission and Environment research group, Huddersfield University, England, for their technical support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the experimental and theoretical works are done by ‘HD’. The paper is written by ‘HD’ and helped by ‘QX’. Technical guidance was provided by ‘QX’ and also some necessary modifications are done by him. This whole work is guided by ‘PD’ and theoretical concepts were introduced in the paper by her. All the three authors finally checked and approved the manuscript.

Corresponding author

Correspondence to Hirendra Das.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests in this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, H., Xu, Q. & Datta, P. Effect of ZnS and PbS shell on mem-behavior of CdS quantum dots. J Mater Sci: Mater Electron 32, 7049–7060 (2021). https://doi.org/10.1007/s10854-021-05415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05415-6

Navigation