Controlled chemical oxidative polymerization of conductive polyaniline with excellent pseudocapacitive properties

Abstract

Nowadays, the application of supercapacitor in energy storage is more and more extensive, and the selection and preparation of electrode material have become a formidable challenge. Polyaniline (PANI) has turned into one of the most hopeful conductive polymers due to its superior properties. In this article, conductive polyaniline was synthesized by chemical oxidative polymerization to acquire excellent electrochemical properties. Scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD) measurements were adopted to explore the microstructure and energy storage capacity. The PANI is in coralline network morphology with high surface area, which can supply more active sites during charge and discharge process. The PANI shows a high specific capacitance value of 790 F/g, and the highest conductivity is 15.5 S/cm. The consequence shows that PANI synthesized under certain conditions has a promising feasibility for applications in high-performance supercapacitor electrode material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    M. Cossutta, V. Vretenar, T.A. Centeno, P. Kotrusz, J. McKechnie, S.J. Pickering, J. Clean. Prod. 242, 118468 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu, Y. Sun, Adv. Funct. Mater. 30, 190302 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang, H. Li, M. Zhu, T.F. Hung, J. Liu, Z. Shi, C. Zhi, J. Mater. Chem. A 6, 8549 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    X. Zheng, L. Yao, Y. Qiu, S. Wang, K. Zhang, ACS Appl. Energy Mater. 2, 4335 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    W. Liu, M.S. Song, B. Kong, Y. Cui, Adv. Mater. 29, 1603431 (2017)

    Google Scholar 

  6. 6.

    H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Energy Environ. Ence 11, 941 (2018)

    CAS  Google Scholar 

  7. 7.

    W.A. El-Said, M. Abdel-Shakour, A.M. Abd-Elnaiem, Mater. Lett. 222, 126 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    D. Li, Y. Liu, B. Lin, Y. Sun, X. Zhang, Prog. Chem. 27, 404 (2015)

    CAS  Google Scholar 

  9. 9.

    B. Li, X. Zhang, J. Dou, C. Hu, Ceram. Int. 45, 16297 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    K. Sharma, K. Pareek, R. Rohan, P. Kumar, Int. J. Energy Res. 43, 604 (2018)

    Article  Google Scholar 

  11. 11.

    L. Tseng, C. Hsiao, D.D. Nguyen, P. Hsieh, C. Lee, N. Tai, Electrochim. Acta 266, 284 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 36, 268 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, ACS Appl. Mater. Inter. 5, 8790 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Long, L. Zhang, Y. Ma, Z. Chen, N. Wang, Z. Zhang, M. Wan, Macromol. Rapid Commun. 24, 938 (2003)

    CAS  Article  Google Scholar 

  15. 15.

    M. Manoj, K.M. Anilkumar, B. Jinisha, S. Jayalekshmi, J. Mater. Sci.-Mater. El. (2017)

  16. 16.

    A. Moyseowicz, G. Gryglewicz, Composites B 159, 4 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    H. Pal, S. Bhubna, P. Kumar, R. Mahapatra, S. Chatterjee, J. Mater. Eng. Perform. 27, 2668 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347, 86 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    P. Yu, X. Zhao, Y. Li, Q. Zhang, Appl. Surf. Sci. 393, 37 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    G. Li, Z. Feng, J. Zhong, Z. Wang, Y. Tong, Macromolecules 43, 2178 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Zhang, G.C. Rutledge, Macromolecules 45, 4238 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    M. Li, Y. Guo, Y. Wei, A. Macdiarmid, P. Lelkes, Biomaterials 27, 2705 (2006)

    CAS  Article  Google Scholar 

  23. 23.

    X. He, B. Sun, B. Gao, A. Pang, H. Suo, C. Zhao, J. Electroanal. Chem. 792, 88 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    A. Imani, G. Farzi, J. Mater. Sci. 26, 7438 (2015)

    CAS  Google Scholar 

  25. 25.

    X. He, B. Gao, G. Wang, J. Wei, C. Zhao, Electrochim. Acta 111, 210 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    W. Liu, Y. Yang, X. Liu, B. Xu, New Carbon Mater. 31, 594 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sources 190, 578 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Wang, Y. Wang, Y. Tian, L. Ma, C. Wang, X. Gao, ECS J. Solid State Sci. 8, M103 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    H. Cong, X. Ren, P. Wang, S. Yu, Energy Environ. Sci. 6, 1185 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    C. Yang, L. Zhang, N. Hu, Z. Yang, Y. Su, S. Xu, M. Li, L. Yao, M. Hong, Y. Zhang, Chem. Eng. J. 309, 89 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    G. Li, Z. Zhang, Macromolecules 37, 2683 (2004)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Li, X. Zhao, Q. Xu, Q. Zhang, D. Chen, Langmuir 27, 6458 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, H. Wei, Z. Yang, Y. Su, Y. Zhang, J. Power Sources 342, 1 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    F. Ran, Y. Tan, W. Dong, Z. Liu, L. Kong, L. Kang, Polym. Adv. Technol. 29, 1697 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    S. Xing, H. Zheng, G. Zhao, Synth. Met. 158, 59 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    O. Sadak, M.U.A. Prathap, S. Gunasekaran, Carbon 144, 756 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    M.U. Anu Prathap, A.K. Chaurasia, S.N. Sawant, S.K. Apte, Anal. Chem. 84, 6672 (2012)

    CAS  Article  Google Scholar 

  38. 38.

    J.E. Pereira Da Silva, D.L.A. de Faria, S.I. Córdoba De Torresi, M.L.A. Temperini, Macromolecules 33, 3077 (2000)

    CAS  Article  Google Scholar 

  39. 39.

    A.K. Das, S.K. Karan, B.B. Khatua, Electrochim. Acta 180, 1 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    M. Khalid, M.A. Tumelero, V.C. Zoldan, C.C.P. Cid, RSC Adv. 4, 34168 (2014)

    CAS  Article  Google Scholar 

  41. 41.

    Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, ACS Nano 11, 2952 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their valuable comments on this manuscript. This work was supported by the Natural Science Foundation in Shandong Province (2018GGX104022, 2018GGX102031), and National Natural Science Foundation of China (51773110).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanxiang Wang or Xueping Gao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Xu, X. et al. Controlled chemical oxidative polymerization of conductive polyaniline with excellent pseudocapacitive properties. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05403-w

Download citation