Effect of the Fe2O3 addition on the elastic and gamma-ray shielding features of bismuth sodium-borate glass system


The elastic properties were predicted for four glass samples with chemical compositions xFe2O3 + (25 − x)Bi2O3 + 75Na2B4O7, where x = 5,10, 15, and 20 mol%. The studied glass samples' molar volume and molecular weight were studied based on the chemical composition and the sample density. Moreover, the Makishima–Mackenzie model was applied to predict the studied glass samples' elastic properties. The elastic moduli were observed to increase gradually with the Fe2O3 insertion ratio and the packing density increase. The elastic moduli ranged between 57.67–85.29 GPa, 33.47–65.49 GPa, 23.77–33.24 GPa, and 65.17–109.81 GPa for Young, Bulk, Shear, and Longitudinal moduli, respectively. Moreover, the Monte Carlo simulation code and XCOM software program were applied to predict the main shielding parameters, linear attenuation coefficient (LAC), and mass attenuation coefficient (MAC). The LAC varied between 2.138–0.197 cm−1 and 0.946–0.186 cm−1 for glass samples with 5 and 20 mol% of the Fe2O3 content. Based on the simulated LAC, the half-value layer (HVL), mean free path (mfp), and the radiation protection efficiency (RPE) were estimated. The BXCOM software program was applied to predict the photon accumulation inside the studied glass samples (exposure buildup factor (EBF) and energy absorption buildup factor (EABF)).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    M.Y. Hanfi, I.V. Yarmoshenko, A.A. Seleznev, G. Malinovsky, E. Ilgasheva, M.V. Zhukovsky, Beta radioactivity of urban surface–deposited sediment in three Russian cities. Environ. Sci. Pollut. Res. 27(32), 40309–40315 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    M.H.A. Mhareb, Physical, optical, and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46, 12718–12726 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Q. Chen, K.A. Naseer, K. Marimuthu, P. SuthanthiraKumar, B. Miao, K.A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00531-8

    Article  Google Scholar 

  5. 5.

    R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 46(13), 21120–21127 (2020). https://doi.org/10.1016/j.ceramint.2020.05.188

    CAS  Article  Google Scholar 

  6. 6.

    M. Dong, X. Xue, H. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 141, 239–244 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cement Concr. Compos. 28(2), 153–157 (2006)

    CAS  Article  Google Scholar 

  9. 9.

    O.P. Lakhwani, V. Dalal, M. Jindal, A. Nagala, Radiation protection and standardization. J. Clin. Orthop. Trauma 10, 738–743 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nucl. Eng. Technol. (2020). https://doi.org/10.1016/j.net.2020.12.012

    Article  Google Scholar 

  12. 12.

    N.J. AbuAlRoos, N.A. Baharul Amin, R. Zainon, Conventional, and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review. Radiat. Phys. Chem. 165, 108439 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    A.M. Zoulfakar, A.M. Abdel-Ghany, T.Z. Abou-Elnasr, A.G. Mostafa, S.M. Salem, H.H. El-Bahnaswy, Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses. Appl. Radiat. Isot. 127, 269–274 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    N. Chanthima, J. Kaewkhao, P. Limsuwan, Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO, and PbO in the energy region of 1 keV to 100 GeV. Ann. Nucl. Energy 41, 119–124 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural, and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses. J. Non-Cryst. Solids 499, 75–85 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. 46, 6136–6140 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 68, 4–9 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 404, 167–173 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    K.M. Kaky, M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. J. Non-Cryst. Solids 546, 120272 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    A.A. Hendi, M. Rashad, M.I. Sayyed, Gamma radiation shielding study of tellurite glasses containing V2O5 and Bi2O3 using Geant4 code. Int. Ceram. (2020). https://doi.org/10.1016/j.ceramint.2020.08.053

    Article  Google Scholar 

  23. 23.

    S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)

    Article  Google Scholar 

  24. 24.

    W. Rachniyom, W. Chaiphaksa, P. Limkitjaroeanporn, S. Tuschaoen, N. Sangwaranatee, J. Kaewkhao, Effect of Bi2O3 on radiation shielding properties of glasses from coal fly ash. Mater. Today 5, 14046–14051 (2018)

    CAS  Google Scholar 

  25. 25.

    Y. Al-Hadeethi, M.I. Sayyed, Radiation attenuation properties of Bi2O3-Na2O-V2O5-TiO2-TeO2 glass system using Phy-X/PSD software. Ceram. Int. 46, 4795–4800 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    Y.S. Rammah, F.I. El-Agwany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2·Li2O·ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. J. Non-Cryst. Solids 544, 120162 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2021)

    CAS  Article  Google Scholar 

  28. 28.

    A. Al-Hajry, N. Tashtoush, M.M. El-Desoky, Characterization and transport properties of semiconducting Fe2O3–Bi2O3–Na2B4O7 glasses. Phys. B 368, 51–57 (2005)

    CAS  Article  Google Scholar 

  29. 29.

    S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82(12), 3501–3507 (1999)

    CAS  Article  Google Scholar 

  30. 30.

    A. Makishima, J.D. Mackenzie, Direct calculation of Young’s modulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973)

    CAS  Article  Google Scholar 

  31. 31.

    A. Makishima, J.D. Mackenzie, Calculation of Bulks modulus, Shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 17, 147–157 (1975)

    CAS  Article  Google Scholar 

  32. 32.

    X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos Controlled Publication. LA-CP-03-0245 (2003)

  33. 33.

    F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the Kedge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    E.A. AbdelWahab, M.S.I. Koubisy, M.I. Sayyed, K.A. Mahmoud, A.F. Zatsepin, S.A. Makhlouf, Kh.S. Shaaban, Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. J. Nanocryst. Solids 553, 120509 (2021)

    CAS  Article  Google Scholar 

  35. 35.

    Ö. Eyecioğlu, A.M. El-Khayatt, Y. Karabul, M. Çağlar, O. Toker, O. İçelli, BXCOM: a software for computation of radiation sensing. Radiat. Eff. Defects Solids 174, 506–518 (2019)

    Article  Google Scholar 

  36. 36.

    S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system. Results Phys. 13, 102165 (2019)

    Article  Google Scholar 

  37. 37.

    M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    R. El-Mallawany, H.A. Afifi, M. El-Gazery, A.A. Ali, Effect of Bi2O3 addition on the ultrasonic properties of pentaternary borate glasses. Measurement 116, 314–317 (2018)

    Article  Google Scholar 

  39. 39.

    Y.B. Saddeek, M.A. Azooz, A.B. Saddek, Ultrasonic investigations of some bismuth borate glasses doped with Al2O3. Bull. Mater. Sci. 38(1), 241–246 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    N. Yıldız Yorgun, E. Kavaz, H.O. Tekin, M.I. Sayyed, Ö.F. Özdemir, Borax effect on gamma and neutron shielding features of lithium borate glasses: an experimental and Monte Carlo studies. Mater. Res. Express 6, 115217 (2019)

    Article  Google Scholar 

  41. 41.

    J. Kaewkhaoa, A. Pokaipisitb, P. Limsuwan, Study on borate glass system containing with Bi2O3and BaO for gamma-rays shielding materials: comparison with PbO. J. Nucl. Mater. 399, 38–40 (2010)

    Article  Google Scholar 

  42. 42.

    P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural, and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 72, 245–251 (2011)

    CAS  Article  Google Scholar 

  43. 43.

    SCHOTT AG, http://www.schott.com/advanced_optics/english/products/optical-materials/special materials/radiation-shielding-glasses/index.html

  44. 44.

    M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    CAS  Article  Google Scholar 

Download references


This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information



Corresponding authors

Correspondence to Mohammed Alotiby or M. I. Sayyed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Yousef, H.A., Alotiby, M., Hanfi, M.Y. et al. Effect of the Fe2O3 addition on the elastic and gamma-ray shielding features of bismuth sodium-borate glass system. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05400-z

Download citation