Fabrication of cupric oxide‐based transistors by sol–gel technique

Abstract

Solution-processed metal-oxide semiconductors are a great challenge for advanced electronic devices. Here we report the fabrication of field-effect transistor with a cupric oxide (CuO) films prepared by the sol–gel technique. The X-ray diffraction and optical spectroscopy confirmed the presence of polycrystalline cupric oxide film with an energy gap of 1.0 eV. The field-effect transistor proved semiconductor behaviour with p-type conductivity and the charge mobility of 0.034 cm2/V s and On/Off ratio of 104, that makes the sol–gel technique a suitable low-cost alternative of sputtering technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    S.J. Kim, S. Yoon, H.J. Kim, Review of solution-processed oxide thin-film transistors. Jpn. J. Appl. Phys. 53, 02BA02/1–10 (2014)

    Google Scholar 

  4. 4.

    E. Fortin, F.L. Weichman, Hall effect and electrical conductivity of Cu2O monocrystals. Can. J. Phys. 44, 1551–1561 (1966)

    CAS  Article  Google Scholar 

  5. 5.

    K. Matsuzaki, K. Nomura, H. Yanagi, M. Hinaro, H. Hosono, Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 93, 202107/1–202107/3 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    B. Balamurugan, B.R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396, 90–96 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    V.F. Drobny, and L.Pulfrey, Properties of reactively-sputtered copper oxide thin films. Thin Solid Films 61, 89–98 (1979)

    CAS  Article  Google Scholar 

  8. 8.

    G. Martínez-Saucedo, R. Castanedo-Pérez, G. Torres-Delgado, A. Mendoza-Galván, O. Zelaya Ángel, Cuprous oxide thin films obtained by dip-coating method using rapid thermal annealing treatments. Mater. Sci. Semicond. Process. 68, 133–139 (2017)

    Article  Google Scholar 

  9. 9.

    S.Y. Kim, C.H. Ahn, J.H. Lee, Y.H. Kwon, S. Hwang, J.Y. Lee, H.K. Cho, p-Channel oxide thin film transistors using solution-processed copper oxide. ACS Appl. Mater. Interfaces 5, 2417–2421 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    J. Jang, S. Chung, H. Kang, V. Subramanian, P-type CuO and Cu2O transistors derived from a sol–gel copper (II) acetate monohydrate precursor. Thin Solid Films 600, 157–161 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    P. Pattanasattayavong, S. Thomas, G. Adamopoulos, M.A. McLachlan, T.D. Anthopoulos, p-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett. 102, 163505/1–163505/4 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Recent developments in p‐Type oxide semiconductor materials and devices. Adv. Mater. 28, 3831–3892 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid State Electron. 29, 7–17 (1986)

    CAS  Article  Google Scholar 

  14. 14.

    K.C. Sanal, L.S. Vikas, M.K. Jayaraj, Room temperature deposited transparent p-channel CuO thin film transistors. Appl. Surf. Sci. 297, 153–157 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    Z. Chen, X. Xiao, Y. Shao, W. Meng, S. Zhang, L. Yue, L. Xie, P. Zhang, H. Lu, S. Zhang, Fabrication of p-type copper oxide thin-film transistors at different oxygen partial pressure, in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3 (2014)

  16. 16.

    S.Y. Sung, S.Y. Kim, K.M. Jo, J.H. Lee, J.J. Kim, S.G. Kim, K.H. Chai, S.J. Pearton, D.P. Norton, Y.W. Heo, Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Appl. Phys. Lett. 97, 222109/1–222109/3 (2010)

    CAS  Google Scholar 

  17. 17.

    Y. Yang, J. Yang, W. Yin, F. Huang, A. Cui, D. Zhang, W. Li, Z. Hu, J. Chu, Annealing time modulated the film microstructures and electrical properties of P-type CuO field effect transistors. Appl. Surf. Sci. 481, 632–636 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    B.N.Q. Trinh, N.V. Dung, N.Q. Hoa, N.H. Duc, D.H. Minh, A. Fujiwara, Solution-processed cupric oxide p-type channel thin-film transistors. Thin Solid Films 704, 137991/1-137991/8 (2020)

    Article  Google Scholar 

  19. 19.

    S. Lee, W.-Y. Lee, B. Jang, T. Kim, J.H. Bae, K. Cho, S. Kim, J. Jang, Sol-gel processed p-type CuO phototransistor for a near-infrared sensor. IEEE Electron Dev. Lett. 39, 47–50 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    P.K. OOi, S.S. Ng, M.J. Abdullah, H. Abu Hassan, Z. Hassan, Effects of oxygen percentage on the growth of copper oxide thin films by reactive radio frequency sputtering. Math. Chem. Phys. 140, 243–248 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 57, 377–385 (2000)

    CAS  Article  Google Scholar 

  22. 22.

    P. Mallick, Synthesis of copper oxide nanocomposite (Cu2O/CuO) by sol–gel route. Proc. Natl. Acad. Sci. 84, 387–9 (2014)

    CAS  Google Scholar 

  23. 23.

    S. Rehman, A. Mumtaz, S.K. Hasanain, Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 13, 2497–2507 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    R.W.G. Wyckoff, Cubic closest packed, ccp. Cryst. Struct. 1, 7–83 (1963)

    Google Scholar 

  25. 25.

    A. Kirfel, K. Eichhorn, Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr. A46, 271–284 (1990)

    CAS  Article  Google Scholar 

  26. 26.

    R.W.G. Wyckoff, ZnS structure, sphalerite structure. Cryst. Struct. 1, 85–237 (1963)

    Google Scholar 

  27. 27.

    W.H. Hall, X-ray line broadening in metals. Proc. Phys. Soc. A. 62, 741–743 (1949)

    Article  Google Scholar 

  28. 28.

    A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)

    Article  Google Scholar 

Download references

Funding

Funding was provided by Agentúra na Podporu Výskumu a Vývoja Grant Nos. (APVV-16-0079, APVV-17-0522, APVV-17-0501), Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR Grant No. (1/0452/19).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Weis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vincze, T., Micjan, M., Pavuk, M. et al. Fabrication of cupric oxide‐based transistors by sol–gel technique. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05393-9

Download citation