Manufacturing of nanoflowers crystal of ZnQ2 by a co-precipitation process and their morphology-dependent luminescence properties


Bis(8-hydroxyquinoline) zinc (ZnQ2) nano-flowers by the various solution and surfactant in a water environment were synthesized at room temperature by a simple chemical precipitation method. The functional groups of the compound, structural, morphology, and fluorescence properties of Znq2 nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), photoluminescence (PL) spectroscopy, and Ultraviolet–visible spectroscopy (UV–Vis). The ZnQ2 nanostructures were characterized by X-ray diffraction (XRD) analysis to confirm the crystalline nature of the synthesized ZnQ2 nanostructures by the various media and with/without surfactant. The mainly synthetic strategies are divided into three categories, which include growth in the same solvent environments, uneven solutions, and surfactant. Then, optoelectronic properties including luminescence, charge transport are reviewed. The results indicate that the configuration of ZnQ2 nanostructures depends on the crystal habit and growing environment. Different media could provide discrepant surroundings for crystal growth, which resulted in the products with diverse morphologies. These results for ZnQ2-CTAB certify that CTAB plays a crucial role in the formation of nanoflowers. Luminescence properties of Zinc complex nanostructures indicate that nano-flowers of zinc complex have the highest light intensity and lowest absorption. Also, the Znq2 nano-flowers and nano-sheets exhibited green photoluminescence with a peak at around 498–499 nm. The optical results obtained from ZnQ2 nanoflowers showed more PL-Quantum yields compared with nano-sheets about 30%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    A. Mohanty, N. Garg, R. Jin, A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. 122(29), 5082–5086 (2010)

    Article  Google Scholar 

  2. 2.

    K.C.-F. Leung, S. Xuan, X. Zhu, D. Wang, C.-P. Chak, S.-F. Lee, W.K.-W. Ho, B.C.-T. Chung, Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev. 41(5), 1911–1928 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    B.I. Kharisov, A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2(3), 190–200 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Tunable nanowire nonlinear optical probe. Nature 447(7148), 1098–1101 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314(5802), 1107–1110 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, The structure of ferrihydrite, a nanocrystalline material. Science 316(5832), 1726–1729 (2007)

    CAS  Article  Google Scholar 

  7. 7.

    N.S. Ramgir, I.S. Mulla, V.K. Pillai, Micropencils and microhexagonal cones of ZnO. J. Phys. Chem. B 110(9), 3995–4001 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    L. Qi, H. Cölfen, M. Antonietti, Crystal design of barium sulfate using double-hydrophilic block copolymers. Angew. Chem. Int. Ed. 39(3), 604–607 (2000)

    CAS  Article  Google Scholar 

  9. 9.

    H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Growth of epitaxial nanowires at the junctions of nanowalls. Science 300(5623), 1249–1249 (2003)

    CAS  Article  Google Scholar 

  10. 10.

    R.A. McBride, J.M. Kelly, D.E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. 13(5), 1196–1201 (2003)

    CAS  Article  Google Scholar 

  11. 11.

    G.H. Du, G. Van Tendeloo, Cu (OH) 2 nanowires, CuO nanowires and CuO nanobelts. Chem. Phys. Lett. 393(1–3), 64–69 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    K. Karthik, D. Radhika, K.K. Sadasivuni, K.R. Reddy, metal oxides and its hybrids for photocatalytic and biomedical applications. Adv. Colloid. Interface 281, 102178 (2020)

    Article  CAS  Google Scholar 

  13. 13.

    S.D. Bukkitgar, N.P. Shetti, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem 23, 100183 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    M. Srinivas, R.C. Venkata, R.R. Kakarla, N.P. Shetti, M.S. Reddy, V.R. Anjanapura, Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater. Res. Express 6(12), 125502 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    U. Jinendra, J. Kumar, B.M. Nagabhushana, A.V. Raghu, D. Bilehal, Facile synthesis of CoFe2O4 nanoparticles and application in removal of malachite green dye. Green Mater. 7(3), 137–142 (2019)

    Article  Google Scholar 

  16. 16.

    M.I. Ahamed, A.M. Asiri, E. Lichtfouse, Nanophotocatalysis and Environmental Applications (Springer, Cham, 2019).

    Google Scholar 

  17. 17.

    I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    J. Cui, S. Jia, Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 352, 249–263 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    S. Yamaguchi, T. Iida, K. Matsui, Formation of flower-like crystals of tris (8-hydroxyquinoline) aluminum from 8-hydroxyquinoline on anodic porous alumina. Adv. Mater. Sci. Eng. 2017, 1–10 (2017)

    Article  CAS  Google Scholar 

  20. 20.

    Y.Y. Wang, Y. Ren, J. Liu, C.Q. Zhang, S.Q. Xia, X.T. Tao, Crystal growth, structure and optical properties of solvated crystalline Tris (8-hydroxyquinoline) aluminum (III)(Alq3). Dyes Pigm. 133, 9–15 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Z. Shahedi, M.R. Jafari, Synthesis of ZnQ 2, CaQ 2, and CdQ 2 for application in OLED: optical, thermal, and electrical characterizations. J. Mater. Sci. 28(10), 7313–7319 (2017)

    CAS  Google Scholar 

  22. 22.

    M. Jafari, M. Reza, Janghouri, Z. Shahedi, Fabrication of an organic light-emitting diode from new host π electron rich zinc complex. J. Electron. Mater. 46(1), 544–551 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    Z. Shahedi, Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS. Appl. Phys. A 123(1), 98 (2017)

    Article  CAS  Google Scholar 

  24. 24.

    W. Xie, Z. Pang, Yu Zhao, F. Jiang, H. Yuan, H. Song, S. Han, Structural and optical properties of ε-phase tris (8-hydroxyquinoline) aluminum crystals prepared by using physical vapor deposition method. J. Cryst. Growth 404, 164–167 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    H. Jianbo, Z. Tingting, C. Yongjing, Z. Yuanyuan, Y. Weiqing, M. Menglin, Study on relationship between fluorescence properties and structure of substituted 8-hydroxyquinoline zinc complexes. J. Fluoresc. 28(5), 1121–1126 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Li, X. Zhong, Y. Xu, J. Liu, S. Wu, H. Zeng, Green synthesis and characterization of 8-hydroxyquinoline barium (BaQ2). Optik 180, 151–158 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    I.M. Nagpure, M.M. Duvenhage, S.S. Pitale, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, Synthesis, thermal and spectroscopic characterization of Caq2 (calcium 8-hydroxyquinoline) organic phosphor. J. Fluoresc. 22(5), 1271–1279 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    X. Bing-she, H. Yu-ying, W. Hua, Z. He-feng, L. Xu-guang, C. Ming-wei, The effects of crystal structure on optical absorption/photoluminescence of bis (8-hydroxyquinoline) zinc. Solid State Commun. 136(6), 318–322 (2005)

    Article  CAS  Google Scholar 

  29. 29.

    Z. Yin, B. Wang, G. Chen, M. Zhan, One-dimensional 8-hydroxyquinoline metal complex nanomaterials: synthesis, optoelectronic properties, and applications. J. Mater. Sci. 46, 2397–2409 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    J. Park, S. Kim, J. Choi, S.H. Yoo, S. Oh, D.H. Kim, D.H. Park, Fine fabrication and optical waveguide characteristics of hexagonal tris (8-hydroxyquinoline) aluminum (III)(Alq3) crystal. Crystals 10(4), 260 (2020)

    CAS  Article  Google Scholar 

  31. 31.

    Y.S. Zhao, C. Di, W. Yang, G. Yu, Y. Liu, J. Yao, Photoluminescence and electroluminescence from tris (8-hydroxyquinoline) aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 16(15), 1985–1991 (2006)

    CAS  Article  Google Scholar 

  32. 32.

    C.-J. Mao, D.-C. Wang, H.-C. Pan, J.-J. Zhu, Sonochemical fabrication of 8-hydroxyquinoline aluminum (Alq3) nanoflowers with high electrogenerated chemiluminescence. Ultrason. Sonochem. 18(2), 473–476 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    Xi. Li, J. Li, Y. Li, K. Xia, Surface modification and characterization of 8-hydroxyquinoline aluminum/nano-TiO2. J. Lumin. 171, 131–137 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    S. Chen, P. Slattum, C. Wang, L. Zang, Self-assembly of perylene imide molecules into 1D nanostructures: methods, morphologies, and applications. Chem. Rev. 115(21), 11967–11998 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    X. Wang, M. Shao, Li. Liu, Photoconductivity of a bundle of Bis (8-hydroxyquinoline) cadmium nanoribbons. J. Mater. Sci. 22(2), 120–123 (2011)

    Google Scholar 

  36. 36.

    X.-B. Chen, Z. Gong, B.-C. Zhou, X.-W. Hu, C.-J. Mao, J.-M. Song, H.-L. Niu, S.-Y. Zhang, Synthesis of 8-hydroxyquinoline cadmium (Cdq2) nanobelts with enhanced electrogenerated chemiluminescence properties. Mater. Lett. 75, 155–157 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    X.-B. Chen, X.-D. Yang, Hu. Xiao-Wei, C.-J. Mao, J.-M. Song, H.-L. Niu, S.-Y. Zhang, Fabrication and electrogenerated chemiluminescence properties of uniform octahedral 8-hydroxyquinoline zinc (Znq2). Mater. Res. Bull. 48(4), 1675–1680 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    H.C. Pan, F.P. Liang, C.J. Mao, J.J. Zhu, H.Y. Chen, Highly Luminescent zinc (II)−bis (8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing. J. Phys. Chem. B 111(20), 5767–5772 (2007)

    CAS  Article  Google Scholar 

  39. 39.

    X. Wang, M. Shao, Li. Liu, High photoluminescence and photoswitch of bis (8-hydroxyquinoline) zinc nanoribbons. Synth. Met. 160(7–8), 718–721 (2010)

    CAS  Article  Google Scholar 

  40. 40.

    X.-D. Yang, X.-B. Chen, C.-J. Mao, J.-M. Song, H.-L. Niu, S.-Y. Zhang, Sonochemical synthesis and electrogenerated chemiluminescence properties of 8-hydroxyquinoline manganese (Mnq2) nanobelts. J. Alloys Compd. 590, 465–468 (2014)

    CAS  Article  Google Scholar 

  41. 41.

    L.M.A. Monzon, F. Burke, J.M.D. Coey, Optical, magnetic, electrochemical, and electrical properties of 8-hydroxyquinoline-based complexes with Al3+, Cr3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. J. Phys. Chem. C 115(18), 9182–9192 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    H. Pan, H. Lin, Q. Shen, J.-J. Zhu, Cadmium (II)(8-hydroxyquinoline) chloride nanowires: synthesis, characterization and glucose-sensing application. Adv. Funct. Mater. 18(22), 3692–3698 (2008)

    CAS  Article  Google Scholar 

  43. 43.

    B. Wang, H. Lin, Z. Yin, Hydrothermal synthesis of β-cobalt hydroxide with various morphologies in water/ethanol solutions. Mater. Lett. 65(1), 41–43 (2011)

    CAS  Article  Google Scholar 

  44. 44.

    S. Manna, S. Mistri, E. Zangrando, S.C. Manna, The supramolecular assembly of tetraaqua-(pyridine-2, 5-dicarboxylato)-copper (II) complex: crystal structure, TD-DFT approach, electronic spectra, and photoluminescence study. J. Coord. Chem 67(7), 1174–1185 (2014)

    CAS  Article  Google Scholar 

  45. 45.

    L. Coppola, R. Gianferri, I. Nicotera, C. Oliviero, G.A. Ranieri, Structural changes in CTAB/H2O mixtures using a rheological approach. Phys. Chem. Chem. Phys. 6(9), 2364–2372 (2004)

    CAS  Article  Google Scholar 

  46. 46.

    Y. Zhang, Mu. Jin, Controllable synthesis of flower-and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 18(7), 075606 (2007)

    Article  CAS  Google Scholar 

  47. 47.

    R. Wang, Y. Cao, D. Jia, L. Liu, F. Li, New approach to synthesize 8-hydroxyquinoline-based complexes with Zn2+ and their luminescent properties. Opt. Mater. 36(2), 232–237 (2013)

    CAS  Article  Google Scholar 

  48. 48.

    S. Li, H. Wen, N. Yuan, P. Xie, J. Qin, Z. Wang, Synthesis, characterization and computational studies of Zn complex based on the 8-hydroxyquinoline group containing benzimidazole. RSC Adv. 10(54), 32490–32496 (2020)

    Article  Google Scholar 

  49. 49.

    J.-W. Moon, C.J. Rawn, A.J. Rondinone, W. Wang, H. Vali, L.W. Yeary, L.J. Love, M.J. Kirkham, Gu. Baohua, T.J. Phelps, Crystallite sizes and lattice parameters of nano-biomagnetite particles. J. Nanosci. Nanotechnol. 10(12), 8298–8306 (2010)

    CAS  Article  Google Scholar 

  50. 50.

    A. Turley, A. Danos, A. Prlj, A.P. Monkman, B. Curchod, P.R. McGonigal, MK Etherington (2020) Modulation of charge transfer by N-alkylation to control photoluminescence energy and quantum yield. Chem. Sci. 11, 6990 (2020)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hakimeh Zare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahedi, Z., Zare, H. & Sediqy, A. Manufacturing of nanoflowers crystal of ZnQ2 by a co-precipitation process and their morphology-dependent luminescence properties. J Mater Sci: Mater Electron (2021).

Download citation