Preservation stability of chemically synthesized graphite oxide slurry and reduced graphene oxide powder

Abstract

Reduced graphene oxide (RGO) powder and graphite oxide slurry were stored under natural conditions for different times, and then they were characterized in the RGO powder state. The influences of preservation time on the physical and chemical performances of RGO were investigated by different analysis methods. The results indicate that they are relatively stable in X-ray diffraction and Raman activity, whereas changes are detectable in their scanning electron microscopy and transmission electron microscopy characterizations. Importantly, with the increase of preservation time, the specific capacitances at a current density of 1 A/g maintain around 150 F/g for those two groups of RGO samples, indicating that the electrochemical performance of RGO powder fabricated by chemical route is fairly stable. In contrast, there is an obvious decrease in electrical conductivity, and after being stored for 180 days, the electrical conductivities remain only 16.4% and 15.1% of their initial values, respectively. These test results can not only arouse some new research ideas about improving the stability of chemically derived RGO powder and graphite oxide slurry, but also provide important references to their practical applications for industrial production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H.L. Guo, X.F. Wang, Q.Y. Qian, F. Bin Wang, X.H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Article  CAS  Google Scholar 

  7. 7.

    H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44, 1018–1021 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    H. Park, S. Lim, D. Du Nguyen, J.W. Suk, Electrical measurements of thermally reduced graphene oxide powders under pressure. Nanomaterials 9, 1387 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    J. Campos-Delgado, Y.A. Kim, T. Hayashi, A. Morelos-Gómez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R.D. Shull, M.S. Dresselhaus, M. Terrones, Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem. Phys. Lett. 469, 177–182 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    C. Wang, D. Li, C.O. Too, G.G. Wallace, Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604–2606 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    S. Kim, S. Zhou, Y. Hu, M. Acik, Y.J. Chabal, C. Berger, W. De Heer, A. Bongiorno, E. Riedo, Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 11, 544–549 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    J. Dong, Z. Wang, X. Kang, The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors. Colloids Surf. A 489, 282–288 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, Z. Guo, Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene: via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6, 3004–3015 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    A.E. Galashev, O.R. Rakhmanova, Mechanical and thermal stability of graphene and graphene-based materials. Phys. Usp. 57, 970–989 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    M. Cao, Y. Luo, Y. Xie, Z. Tan, G. Fan, Q. Guo, Y. Su, Z. Li, D.B. Xiong, The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Adv. Mater. Interfaces 6, 1900468 (2019)

    Article  CAS  Google Scholar 

  18. 18.

    J. Lin, D. Chen, J. Dong, G. Chen, Preparation of polyvinylpyrrolidone-decorated hydrophilic graphene via in situ ball milling. J. Mater. Sci. 50, 8057–8063 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    M. Fang, Y. Hao, Z. Ying, H. Wang, H.M. Cheng, Y. Zeng, Controllable edge modification of multi-layer graphene for improved dispersion stability and high electrical conductivity. Appl. Nanosci. 9, 469–477 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    Y.U. Shang, D. Zhang, Y. Liu, C. Guo, Preliminary comparison of different reduction methods of graphene oxide. Bull. Mater. Sci. 38, 7–12 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321, 292 (2000)

    CAS  Article  Google Scholar 

  24. 24.

    L. Lai, R. Li, S. Su, L. Zhang, Y. Cui, N. Guo, W. Shi, X. Zhu, Controllable synthesis of reduced graphene oxide/nickel hydroxide composites with different morphologies for high performance supercapacitors. J. Alloys Compd. 820, 153120 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    S. Su, L. Lai, R. Wang, L. Zhang, Y. Cui, R. Li, N. Guo, W. Shi, X. Zhu, Controllable synthesis of reduced graphene oxide/nickel hydroxide composites with different morphologies for high performance supercapacitors. J. Alloys Compd. 834, 154477 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    W. Guoxiu, Y. Juan, P. Jinsoo, G. Xinglong, W. Bei, L. Hao, Y. Jane, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  CAS  Google Scholar 

  28. 28.

    A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21, 9491–9493 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    K. Shen, Z.H. Huang, L. Gan, F. Kang, Graphitic porous carbons prepared by a modified template method. Chem. Lett. 38, 90–91 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros. Relat. Phenomena 195, 145–154 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    CAS  Article  Google Scholar 

  32. 32.

    G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48, 630–635 (2010)

    CAS  Article  Google Scholar 

  33. 33.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Article  Google Scholar 

  34. 34.

    J. Islam, G. Chilkoor, K. Jawaharraj, S.S. Dhiman, R. Sani, V. Gadhamshetty, Vitamin-C-enabled reduced graphene oxide chemistry for tuning biofilm phenotypes of methylotrophs on nickel electrodes in microbial fuel cells. Bioresour. Technol. 300, 122642 (2020)

    CAS  Article  Google Scholar 

  35. 35.

    J. B. Wu, M. L. Lin, X. Cong, H. N. Liu, P. H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 8, 718–724 (2016)

    CAS  Article  Google Scholar 

  37. 37.

    L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, M. J. Natan, Raman spectroscopy. Anal. Chem. 70, 341R–361R (1998)

    CAS  Article  Google Scholar 

  38. 38.

    S. Bian, A.M. Scott, Y. Cao, Y. Liang, S. Osuna, K.N. Houk, A.B. Braunschweig, Covalently patterned graphene surfaces by a force-accelerated Diels–Alder reaction. J. Am. Chem. Soc. 135, 9240–9243 (2013)

    CAS  Article  Google Scholar 

  39. 39.

    A. Rezaei, B. Kamali, A.R. Kamali, Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Meas. J. Int. Meas. Confed. 150, 107087 (2020)

    Article  Google Scholar 

  40. 40.

    M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. M. D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114, 6426–6432 (2010)

    Article  CAS  Google Scholar 

  41. 41.

    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    CAS  Article  Google Scholar 

  42. 42.

    P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8, 1703259 (2018)

    Article  CAS  Google Scholar 

  43. 43.

    G. Lota, T. A. Centeno, E. Frackowiak, F. Stoeckli, Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim. Acta 53, 2210–2216 (2008)

    CAS  Article  Google Scholar 

  44. 44.

    P.M. Kulal, D. P. Dubal, C. D. Lokhande, V. J. Fulari, Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloys Compd. 509, 2567–2571 (2011)

    CAS  Article  Google Scholar 

  45. 45.

    M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 6–10 (2008)

    Article  CAS  Google Scholar 

  46. 46.

    Y. Zhao, P. Jiang, MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloids Surf. A 444, 232–239 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396) and the Fundamental Research Funds for Central Universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1640.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Cui, Y., Su, S. et al. Preservation stability of chemically synthesized graphite oxide slurry and reduced graphene oxide powder. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05379-7

Download citation