Effect of various aqueous electrolytes on the electrochemical performance of V2O5 spindle-like nanostructures as electrode material for supercapacitor application

Abstract

The electrochemical behavior of V2O5 spindle-like nanostructures synthesized through hydrothermal method is studied for supercapacitor applications. The electrochemical supercapacitive performance of the prepared electrode was investigated using cyclic voltammeters (CV), Chronopotentiometry (CP), and Electrochemical impedance spectroscopy (EIS) analyses. The crystallographic structure and phase purity of the V2O5 electrode is investigated by the X-ray diffraction (XRD) analysis. To further confirm the formation of V2O5, the Fourier-transform infrared (FT-IR) spectroscopy, and Fourier-transform Raman spectroscopy (FT-Raman) investigations were carried out. The formation of V2O5 is confirmed by high-resolution transmission electron microscopy (HR-TEM) analyses. The electrode material delivered a high specific capacitance of 403F/g at 1A/g current density in the mixed electrolyte solution (1 M Na2SO4 + 0.5 M KOH). In this mixed electrolyte, V2O5 spindle-like electrode showed a good cyclic stability of 3000 cycles with better capacity retention of 85% at 10A/g.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer-Plenum, New York, 1999).

    Google Scholar 

  2. 2.

    A. Burke, Ultrcapcitors: why, how, and where is the technology. J. Power Sources 91, 37 (2000)

    CAS  Article  Google Scholar 

  3. 3.

    Z. Wenhua, L. Ruizhi, Z. Cheng, L. Yuan, X. Jianlong, L. Jinxing, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4, 7 (2017)

    Google Scholar 

  4. 4.

    S.P. Bruce, A. Arico et al., Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  CAS  Google Scholar 

  5. 5.

    E. Frackowiak, Carbon materials for the electrochemical energy storage of capacitors. Carbon 39, 937–950 (2001)

    CAS  Article  Google Scholar 

  6. 6.

    MAlexey Glushenkov, Structure and capacitive properties of porous nano crystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22, 914–921 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    P. Simon, Y. Gigots, Materials for electrochemical capacitors. Nat.Mater. 7, 845–854 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    B. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Application (Kluwer Academic/Plenum Published, New York, 1997).

    Google Scholar 

  9. 9.

    J.R. Miller, Materials science-Electrochemical capacitors for energy managements. Science 321, 651–652 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    M. Carlen, R. Kotz, Principles and application of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  11. 11.

    A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and role of supercapacitors. J. Power Sources 157, 11–27 (2006)

    CAS  Article  Google Scholar 

  12. 12.

    A. Burke, R&D consideration for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083–1091 (2000)

    Article  CAS  Google Scholar 

  13. 13.

    M. Winter, R.J. Brood, W.A. Batteries, Fuel cells, and supercapacitors. Chem. Rev. 104, 4245–4269 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sellers, A energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    I. Shown, A. Gangly, L.C. Chen, K.H. Chen, Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 3, 2–26 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    V. Augustin, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage . Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  17. 17.

    X. Tian, X. Sun, Z. Jiang, Z.-J. Jiang, X. Hao, D. Shao, T. Maiyalagan, Exploration of the active center structure of nitrogen-doped grapheme for control over the growth of Co3O4 for a high-performance supercapacitor. ACS Appl. Energy Mater. 1, 143–153 (2017)

    Article  CAS  Google Scholar 

  18. 18.

    H.T. Das, K. Mahendraprabhu, T. Maiyalagan, Performance of solid-state hybrid energy-storage device using reduced graphene-oxide anchored sol-gel derived Ni/NiO Nano composite. Sci. Rep. 75, 342 (2017)

    Google Scholar 

  19. 19.

    P. Veerakumar, T. Maiyalagan, B.G.S. Raj, K. Guruprasad, Z. Jiang, K.C. Lin, Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arab. J. Chem. 13(1), 2995–3007 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    N. Kumar, A.S. Guru Prasad, T. Maiyalagan, Enhanced pseudo capacitance from finely ordered pristine α-MnO2 nanorods at favorably high current density using redox additive. Appl. Surface Sci. 449, 492–499 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    G. Durai, P. Kuppusami, K. Viswanathan, Investigation on microstructure and improved supercapacitive performance of Mn doped CuO thin films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. 29(3), 2051–2058 (2018)

    CAS  Google Scholar 

  22. 22.

    G. Durai, P. Kuppusami, J. Theerthagiri, Microstructural and supercapacitive properties of reactive magnetron co-sputtered Mo3N2 electrodes: effects of Cu doping. Mater. Lett. 1(220), 201–204 (2018)

    Article  CAS  Google Scholar 

  23. 23.

    J. Theerthagiri, G. Durai, T. Tatarchuk, M. Sumathi, P. Kuppusami, J. Qin, M.Y. Choi, Synthesis of hierarchical structured rare earth metal–doped Co 3 O 4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials. Ionics 26(4), 2051–2061 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    X. Tian, X. Sun, Z. Jiang, Z.J. Jiang, X. Hao, D. Shao, T. Maiyalagan, Exploration of the active center structure of nitrogen-doped graphene for control over the growth of Co3O4 for a high-performance supercapacitor. ACS Appl. Energy Mater. 1, 143–153 (2017)

    Article  CAS  Google Scholar 

  25. 25.

    H.T. Das, K. Mahendraprabhu, T. Maiyalagan, P. Elumalai, Performance of solid-state hybrid energy-storage device using reduced graphene-oxide anchored sol-gel derived Ni/NiO Nano composite. Sci. Rep. 7(1), 1–14 (2017)

    Article  CAS  Google Scholar 

  26. 26.

    B. Pundit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)

    Article  CAS  Google Scholar 

  27. 27.

    B. Pandit, D.P. Dubal, P. Gomez-Romero, B.B. Kale, B.R. Sankapal, V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci. Rep. 7, 43430 (2017)

    Article  Google Scholar 

  28. 28.

    L. Hua, Z.Y. Ma, P.P. Shi, L. Li, K. Rue, Ultrathin and large-sized vanadium oxide nano sheets mildly prepared at room temperature for high performance fiber-based supercapacitors. J. Mater. Chem. A 5, 2483–2487 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    T. Peng, J. Wang, Q. Liu, Design of mass-controllable NiCo2S4/Ketjen Black Nano composite electrodes for high performance supercapacitors. CrystEngComm 17, 1673–1679 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    C. Zhong, Y. Deng, H. Wenbin, A review of electrolyte materials and compositions for electrochemical supercapacitor. Chem. Soc. Rev. 44, 7484 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    Q. An, P. Zhang, F. Xiong, Q. Wei, Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 8(2), 481–490 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    K. Kannagi, Super critically synthesized V2O5 spheres based supercapacitors using polymer electrolyte. Appl. Surf. Sci. 456, 13–18 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    D. Majumdar, M. Mandal, S.K. Bhattacharya, Review on V2O5 and its’ carbon-based nanocomposites for supercapacitor applications. ChemElectroChem. 6, 1623–1648 (2018)

    Article  CAS  Google Scholar 

  34. 34.

    M. Jayachandran, G. Durai, T. Vijayakumar, Synthesis and characterization of prospective polyanionic electrode materials for high-performance energy storage application. Mater. Res. Express. 5, 044002 (2018)

    Article  CAS  Google Scholar 

  35. 35.

    F. Liao, X. Han, Y. Zhang, Solvothermal synthesis of porous MnCo2O45 spindle-like microstructures as high-performance electrode materials for supercapacitors. Ceram. Int. 44, 22622–22631 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    M. Jayachandran, A. Rose, T. Maiyalagan, N. Poongodi, T. Vijayakumar, Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 366, 137412 (2021)

    CAS  Article  Google Scholar 

  37. 37.

    B. Balamuralitharan, I.-H. Cho, J.-S. Bak, H.-J. Kim, V2O5 Nano rod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. New J. Chem. 42, 11862–11868 (2018)

    Article  Google Scholar 

  38. 38.

    M. Nabavi, C. Sanchez, F. Taulelle, J. Livage, A. Deguibert, electrochemical properties of amorphous VO. Solid State Ion. 28, 1183–1186 (1988)

    Article  Google Scholar 

  39. 39.

    A. De Adhikari, R. Oraon, S.K. Tiwari, J.H. Lee, A V2O5 Nano rod decorated graphene/polypyrrole hybrid electrode: a potential candidate for supercapacitors. New J. Chem. 41, 1704–1713 (2017)

    Article  Google Scholar 

  40. 40.

    M.K. Chine, F. Sediri, N. Gharbi, Hydrothermal synthesis of V3O7.H2O nano belts and study of their electrochemical properties. Mater. Sci. Appl. 2(8), 964–970 (2011)

    CAS  Google Scholar 

  41. 41.

    M. Fuchs, M. Scheffler, Ab initio pseudo potentials for electronic structure calculations of poly-atomic systems using density-functional theory M. Comput. Phys. Commun 119, 67 (1999)

    CAS  Article  Google Scholar 

  42. 42.

    K. Liang, X. Tang, W. Hu, Y. Yang, Ultrafine V2O5 nanowires in 3D current collector for high performance supercapacitor. Chem. Electron. Chem. 3, 704–708 (2016)

    CAS  Google Scholar 

  43. 43.

    S. Pan, L. Chen, Y. Li, S. Han, L. Wang, G. Shao, Disodium citrate-assisted hydrothermal synthesis of V2O5 nanowires for high performance supercapacitors. RSC Adv. 8, 3213–3217 (2018)

    CAS  Article  Google Scholar 

  44. 44.

    D. Majumdar, M. Mandal, S.K. Bhattacharya, Review on V2O5 and carbon-based nanocomposites for supercapacitor applications. Ceram. Int. 41, 12626–12632 (2015)

    Article  CAS  Google Scholar 

  45. 45.

    M. Jayalakshmi, M.M. Rao, N. Venugopal, K.B. Kim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sources 166, 578–583 (2007)

    CAS  Article  Google Scholar 

  46. 46.

    N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlogl, Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131–1134 (2003)

    CAS  Article  Google Scholar 

  47. 47.

    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Micro-Raman facility of SRM Central Instrumentation Facility (SCIF), and Nanotechnology Research Center (NRC), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India for the support in characterization studies. The author T. Vijayakumar acknowledges the financial support obtained from the Department of Space, Government of India [Grant no.B.19012/57/2016-II] through RESPOND project and the selective excellence initiative award received from SRM Institute of Science and Technology. The author T. Maiyalagan expresses his gratitude towards the Department of Science and Technology-Science and Engineering Research Board, India for the monetary aid [DSTSERB No. ECR/2016/002025] obtained through the Early Career Research Award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Vijayakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, M., Rose, A., Maiyalagan, T. et al. Effect of various aqueous electrolytes on the electrochemical performance of V2O5 spindle-like nanostructures as electrode material for supercapacitor application. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05378-8

Download citation