Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field

Abstract

The main scope of this research is to investigate the impact of rotating magnetic field (RMF) on the physical properties of the Sn–0.5Ag–0.5Cu–2.0Sb–0.1Al (SAC0505SbAl) solder alloy. The application of RMF during molten alloy cooling showed prominent effect on the morphology, thermal properties, and the consequent mechanical characteristics. It was shown that the dendritic morphology was changed from columnar dendrites to equiaxed grains with the application of RMF. In addition, RMF processing modified the eutectic phases in the alloy matrix. These notable modifications have resulted in a substantial increase in ductility (~ 30%) with a slight decrease in tensile parameters (UTS and YS). Such effects could enhance elastic compliance and plastic energy dissipation ability of solder alloys, which plays superbly fundamental function in drop-impact reliability. Differential scanning calorimetry (DSC) analysis reveals that significant decrease in pasty range (from 10.8 to 7.5 °C) and undercooling (from 13.1 to 9.0 °C) was attained after applying RMF. The stress exponent (n), the activation energy (Q), and deformation mechanism of the SAC0505SbAl alloy processed with and without RMF were discussed in detail. The obtained results are certainly expected to fill the knowledge gap about the behavior of these recently developed solder alloys under the effect of RMF that are potential alternatives as Pb-free interconnecting material in microelectronic packaging industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    J.W. Kim, H.J. Lee, S.B. Jung, Thin Solid Films 547, 120–124 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    J. Gu, J. Lin, Y. Lei, H. Fu, Micro. Rel. 80, 29–36 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    B. Wang, J. Li, A. Gallagher, J. Wrezel, P. Towashirporn, N. Zhao, Micro. Rel. 52, 1475–1482 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    A.M. El-Taher, A.A. Ibrahiem, A.F. Razzk, J. Mater. Sci.: Mater. Elec. 31, 5521–5532 (2020)

    CAS  Google Scholar 

  5. 5.

    K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloys Compd. 485, 225–230 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    I.E. Anderson, J. Mater. Sci.: Mater. Elec. 18, 55–76 (2007)

    CAS  Google Scholar 

  7. 7.

    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, J. Alloys. Compd. 587, 32–39 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    A.M. El-Taher, A.F. Razzk, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00856-w

    Article  Google Scholar 

  9. 9.

    A.E. Hammad, Micro. Rel. 87, 133–141 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, J. Mater. Sci.: Mater. Elec. 24, 2976–2988 (2013)

    CAS  Google Scholar 

  11. 11.

    A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796–805 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, E.O. Ristolainen, Mater. Sci. Eng. A 420(1–2), 55–62 (2006)

    Article  CAS  Google Scholar 

  13. 13.

    A.A. El-Daly, A.M. El-Taher, Mater. Des. 47, 607–614 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    A.E. Hammad, A.M. El-Taher, J. Electron. Mater. 43, 4146–4157 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    A.K. Gain, L. Zhang, Materialia 5, 100234 (2019)

    Article  CAS  Google Scholar 

  16. 16.

    A.A. El-Daly, A.M. El-Taher, M.Z.F. Zaky, Arab. J. Nucl. Sci. Appl. 50(1), 204–216 (2017)

    Google Scholar 

  17. 17.

    B.I. Noh, J.H. Choi, J.W. Yoon, S.B. Jung, J. Alloys Compd. 499, 154–159 (2010)

    CAS  Article  Google Scholar 

  18. 18.

    N.A.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, H. Arof, J. Alloys Compd. 599, 114–120 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    W.M. Chen, S.K. Kang, C.R. Kao, J. Alloys Compd. 520, 244–249 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloys Compd. 719, 365–375 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, Mater. Sci. Eng. A 528, 1055–1062 (2011)

    Article  CAS  Google Scholar 

  22. 22.

    D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, J. Alloys Compd. 689, 918–930 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    B.L. Chen, G.Y. Li, IEE. Trans. Comp. Pack. Technol. 28(3), 534–541 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci.: Mater. Elec. 27, 489–502 (2016)

    CAS  Google Scholar 

  25. 25.

    Xi. Li, Y. Fautrelle, Z. Ren, Acta Mater. 55, 5333–5347 (2007)

    CAS  Article  Google Scholar 

  26. 26.

    A.A. El-Daly, A.A. Ibrahiem, J. Alloys Compd. 730, 47–56 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    A.M. El-Taher, S.E. Abd El Azeem, A.A. Ibrahiem, J. Mater. Sci.: Mater. Elec. 31, 9630–9640 (2020)

    CAS  Google Scholar 

  28. 28.

    J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, T.J. Li, Acta Mater. 72, 57–66 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Des. 113, 195–206 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    D. Samanta, N. Zabaras, Int. J. Heat Mass Transf. 49, 4850–4866 (2006)

    CAS  Article  Google Scholar 

  31. 31.

    V. Travnikov, K. Eckert, P.A. Nikrityuk, S. Odenbach, T. Vogt, S. Eckert, J. Cryst. Growth 339, 52–60 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, L. Lu, Mater. Sci. Eng. A 584, 114–120 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    M. Huang, Q. Zhanga, L. Qia, L. Denga, Y. Li, J. Manuf. Process. 50, 456–466 (2020)

    Article  Google Scholar 

  34. 34.

    J. Zeng, W. Chen, W. Yan, Y. Yang, A. McLean, Mater. Des. 108, 364–373 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    X.D. Wang, T.J. Li, Y. Fautrelle, M.D. Dupouy, J.Z. Jin, J. Cryst. Growth 275, 1473–1479 (2005)

    Article  CAS  Google Scholar 

  36. 36.

    A.A. El-Daly, A.A. Ibrahiem, Micro. Rel. 81, 352–361 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    A.E. Hammad, M. Ragab, J. Mater. Sci.: Mater. Elec. 30, 18838–18847 (2019)

    CAS  Google Scholar 

  38. 38.

    A.A. El-Daly, A.A. Ibrahiem, Micro. Rel. 98, 10–18 (2019)

    Article  CAS  Google Scholar 

  39. 39.

    A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268–275 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, J. Alloys Compd. 509, 4574–4582 (2011)

    CAS  Article  Google Scholar 

  41. 41.

    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Mater. Des. 55, 309–318 (2014)

    CAS  Article  Google Scholar 

  42. 42.

    C.W. Chang, K.L. Lin, J. Electron. Mater. 48, 135–141 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Micro. Rel. 52(11), 2701–2708 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    G.Y. Li, B.L. Chen, X.Q. Shi, Stephen, C.K. Wong, Z.F. Wang, Thin Solid Films 504, 421–425 (2006)

    CAS  Article  Google Scholar 

  45. 45.

    X.O. Shi, W. Zhou, H.L.J. Pang, Z.P. Wang, J. Electron. Pack. 121, 179–185 (1999)

    Article  Google Scholar 

  46. 46.

    H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, M. Luc, Mater. Sci. Eng. A 527, 1343–1350 (2010)

    Article  CAS  Google Scholar 

  47. 47.

    A.A. El-Daly, A.M. El-Taher, Mater. Des. 51, 789–796 (2013)

    CAS  Article  Google Scholar 

  48. 48.

    R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, N. Jahangiri, Mater. Des. 30, 574–580 (2009)

    CAS  Article  Google Scholar 

  49. 49.

    Q.S. Zhu, Z.G. Wang, S.D. Wu, J.K. Shang, Mater. Sci. Eng. A 502, 153–158 (2009)

    Article  CAS  Google Scholar 

  50. 50.

    I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 366, 50–55 (2004)

    Article  CAS  Google Scholar 

  51. 51.

    R.J. McCabe, M.E. Fine, Metal. Mater. Trans. A 33A, 1531–1539 (2002)

    CAS  Article  Google Scholar 

  52. 52.

    C.Z. Liu, T.Y. Kang, W. Wei, K. Zheng, L. Fu, L. Hui, J.J. Wang, W.P. Tong, J. Alloys Compd. 509(33), 8475–8477 (2011)

    CAS  Article  Google Scholar 

  53. 53.

    J. Zhao, P. Yang, F. Zhu, C. Cheng, Scripta Mater. 54, 1077–1080 (2006)

    CAS  Article  Google Scholar 

  54. 54.

    D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Mater. Sci. Eng. A 551, 160 (2012)

    CAS  Article  Google Scholar 

  55. 55.

    A.A. El-Daly, A.A. Ibrahiem, M.A. Abdo, N.A.M. Eid, J. Mater. Sci.: Mater. Elec. 30, 12937–12949 (2019)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Taher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Taher, A.M., Abd El Azeem, S.E. & Ibrahiem, A.A. Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05336-4

Download citation