Impact of N+ ion implantation on the properties of ZnSe thin films

Abstract

Ion implantation in II–VI semiconducting nanostructures has proven to be an effective tool in tailoring the properties of nanostructures, thus making them a prominent candidate to be used in solar cells, gas sensing, optoelectronic, catalytic and many more applications. The present study is aimed at N+ ion implantation effects on various properties of ZnSe thin films. First, a two-step synthesis was employed to synthesize ZnSe nanoflakes by solvothermal technique which were then drop casted onto glass substrate. The impact of 80 keV N+ ions on ZnSe thin films was explored for structural, morphological, elemental, optical and electrical analysis using characterization tools. The X-ray diffraction study revealed peak intensity variation without any shift in the reflex positions. However, the texture analysis depicted a relative intensity variation along with change in preferred orientation of planes with fluence. The optical study demonstrated a decrement in band gap. The I–V characteristics exhibited an intensification in the current values with the exposed fluence. This decline in band gap and increment in conduction values may be because of decrease in charge carrier scattering by the grain boundaries along with generation of higher number of electron–hole pairs with increasing fluence. The effects of implantation on sample characteristics are described in this contribution along with feasible reasons for observed changes in properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B.S. Sengar, V. Garg, A. Kumar, V. Awasthi, S. Kumar, V.V. Atuchin, S. Mukherjee, Opt. Mater. 84, 748–756 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    L. Dyshlyuk, O. Babich, S. Ivanova, N. Vasilchenco, V. Atuchin, I. Korolkov, D. Russakov, A. Prosekov, Int. Biodeterior. Biodegradation 146, 104821 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurang, S.E. Yerci, H.E. Unalan, V. Barrioz, Y. Qu, L. Bowen, A.K. Gürlek, Sol. Energy Mater. Sol. Cells. 176, 100–108 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    X. Liu, C. Chen, Mater. Lett. 26, 1127127 (2020)

    Google Scholar 

  5. 5.

    E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Adv. Mater. 27(27), 3999–4005 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    X. Chen, Y. Shen, X. Zhong, T. Li, S. Zhao, P. Zhou, C. Han, D. Wei, Y. Shen, J. Alloys Compd. 783, 503–512 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Mater. Lett. 131, 225–228 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U. KamachiMudali, J. Alloys Compd. 647, 141–145 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys Compd. 616, 614–617 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    E.M. Manikandan, M.K. Moodley, S. Sinha Ray, B.K. Panigrahi, R. Krishnan, N. Padhy, K.G.M. Nair, A.K. Tyagi, J. Nanosci. Nanotechnol. 10(9), 5602–5611 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    M. Bedir, M. Öztaş, Ö.F. Bakkaloğlu, R. Ormanci, Eur. Phys. J. B 45(4), 465–471 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    X. Zhang, J. Mao, Z. Shao, S. Diao, D. Hu, Z. Tang, H. Wu, J. Jie, J. Mater. Chem. C 5(8), 2107–2113 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    K. Ou, L. Bai, M. Huang, L. Yi, X. Duan, S. Wang, ACS Omega 5(38), 24567–24573 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    P. Prabukanthan, G. Harichandran, J. Electrochem. Soc. 161(14), D736 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    S. Park, S. Kim, W.I. Lee, K.K. Kim, C. Lee, Beilstein J. Nanotechnol. 5(1), 1836–1841 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    G. Bakiyaraj, R. Dhanasekaran, Appl. Nanosci. 3(2), 125–131 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Sayeed, H.K. Rouf, H.K. Amjad, J. Theor. Appl. Phys. 14(3), 251–259 (2020)

    Article  Google Scholar 

  18. 18.

    A. Sanchez-Martinez, J.P. Ortiz-Beas, A.M. Huerta-Flores, E.R. López-Mena, J. Pérez-Álvarez, O. Ceballos-Sanchez, Mater. Lett. 282, 128702 (2020)

    Article  CAS  Google Scholar 

  19. 19.

    H.K. Lee, Z.A. Talib, E. Wang, H.N. Lim, M.A. Mahdi, E.K. Ng, N.M. Yusoff, B.E. AL-Jumaili, J.Y. Liew, Materials 12(14), 2295 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    L. Zuala, P. Agarwal, J. Mater. Sci: Mater. Electron. 31(17), 14756–14766 (2020)

    CAS  Google Scholar 

  21. 21.

    S. Arya, S. Khan, P. Lehana, I. Gupta, S. Kumar, J. Mater. Sci: Mater. Electron. 25(9), 4150–4155 (2014)

    CAS  Google Scholar 

  22. 22.

    P. Sigmund, Stopping of Heavy Ions: A Theoretical Approach (Springer Science & Business Media, Berlin, 2004).

    Google Scholar 

  23. 23.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268(11–12), 1818–1823 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    R. Spohr, Ion tracks and microtechnology: principles and applications, Reimar Spohr (1990).

  25. 25.

    D. Nath, F. Singh, R. Das, Mater. Sci. Semicond. Process. 114, 105079 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    Q. Jiang, M. Ying, J. Lian, K. Dai, Y. Shi, M. Wei, C. Wang, Y. Zhang, Opt. Mater. 105, 109867 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    J. Gaur, H.K. Sharma, S. Tyagi, C. Tyagi, P. Vashishtha, S.K. Sharma, B.P. Singh, Nano Ex. 1(2), 020044 (2020)

    Article  Google Scholar 

  28. 28.

    M. Öztaş, M. Bedir, Mater. Lett. 61(2), 343–346 (2007)

    Article  CAS  Google Scholar 

  29. 29.

    S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, R. Kesavamoorthy, P. Magudapathy, B. Sundaravel, S. Kalavathi, K.G. Nair, Semicond. Sci. Technol. 21, 1661–1667 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    P. Sedzicki, L. Skowronski, R. Szczesny, H.W. Becker, D. Rogalla, M. Pawlak, B. Derkowska-Zielinska, J. Alloys Compd. 844, 156002 (2020). https://doi.org/10.1016/j.jallcom.2020.156002

    CAS  Article  Google Scholar 

  31. 31.

    C. Narula, R.P. Chauhan, J. Alloys Compd. 684, 261–270 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    S. Goyal, R.P. Chauhan, Bull. Mater. Sci. 41(5), 131 (2018)

    Article  CAS  Google Scholar 

  33. 33.

    R. Choudhary, R.P. Chauhan, J. Mater. Sci: Mater. Electron. 29(15), 12595–12602 (2018)

    CAS  Google Scholar 

  34. 34.

    B.D. Cullity, Elements of X-Ray Diffraction (Addison and Wesley Publishing Company Inc., Reading, 1978), pp. 32–106

    Google Scholar 

  35. 35.

    G.B. Harris, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 43(336), 113–123 (1952)

    Article  Google Scholar 

  36. 36.

    T.W. Cornelius, J. Brötz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, M.T. Molares, Nanotechnology 16(5), S246 (2005)

    CAS  Article  Google Scholar 

  37. 37.

    D. Gehlawat, R.P. Chauhan, Mater. Chem. Phys. 145(1–2), 60–67 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    G.K. Williamson, W.H. Hall, Acta Metall. 1(1), 22–31 (1953)

    CAS  Article  Google Scholar 

  39. 39.

    R. Stokes, A.J. Wilson, Proc. Phys. Soc. 56(3), 174 (1944)

    CAS  Article  Google Scholar 

  40. 40.

    D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Reading, 1956).

    Google Scholar 

  41. 41.

    C.S. Barrett, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd edn. (University of Michigan, Pergamon Press, Oxford, 1980).

    Google Scholar 

  42. 42.

    A. Johannes, H.H. Moritz, C. Ronning, Semicond. Sci. Technol. 30(3), 033001 (2015)

    Article  CAS  Google Scholar 

  43. 43.

    A. Berthelot, S. Hémon, F. Gourbilleau, C. Dufour, B. Domenges, E. Paumier, Philos. Mag. A 80(10), 2257–2281 (2000)

    Article  Google Scholar 

  44. 44.

    S. Hemon, F. Gourbilleau, C. Dufour, E. Paumier, E. Dooryhee, A. Rouanet, Nucl. Instrum. Methods Phys. Res. B. 122(3), 526–529 (1997)

    CAS  Article  Google Scholar 

  45. 45.

    J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  Google Scholar 

  46. 46.

    D. Lokhande, P.S. Patil, H. Tributsch, A. Ennaoui, Sol. Energy Mater. Sol. Cells 55(4), 379–393 (1998)

    CAS  Article  Google Scholar 

  47. 47.

    V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Opt. Mater. 34(5), 893–900 (2012)

    CAS  Article  Google Scholar 

  48. 48.

    H. Ji, Z. Huang, Z. Xia, M.S. Molokeev, X. Jiang, Z. Lin, V.V. Atuchin, Dalton Trans. 44(16), 7679–7686 (2015)

    Article  Google Scholar 

  49. 49.

    N. Benmehdi, A. Chelouche, T. Touam, D. Djouadi, A. Doghmane, J. Mater. Sci.: Mater. Electron. 27(6), 5526–5532 (2016)

    CAS  Google Scholar 

  50. 50.

    M.G. Mahesha, N. Meghana, M. Padiyar, Phys. B 520, 37–42 (2017)

    CAS  Article  Google Scholar 

  51. 51.

    M.F. Al-Kuhaili, A. Kayani, S.M. Durrani, I.A. Bakhtiari, M.B. Haider, ACS Appl. Mater. Interfaces 5(11), 5366–5372 (2013)

    CAS  Article  Google Scholar 

  52. 52.

    S. Chuhadiya, R. Sharma, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Phys. E 117, 113845 (2020)

    CAS  Article  Google Scholar 

  53. 53.

    D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, K.O. Egbo, L.F. Koao, Thin Solid Films 693, 137707 (2020)

    CAS  Article  Google Scholar 

  54. 54.

    D. Hile, H.C. Swart, S.V. Motloung, V.B. Pawade, R.E. Kroon, K.O. Egbo, L.F. Koao, Mater. Sci. Semicond. Process. 115, 105118 (2020)

    CAS  Article  Google Scholar 

  55. 55.

    L. Ma, Z. Xia, V. Atuchin, M. Molokeev, S. Auluck, A.H. Reshak, Q. Liu, Phys. Chem. Chem. Phys. 17(46), 31188–31194 (2015)

    CAS  Article  Google Scholar 

  56. 56.

    D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, L.F. Koao, Phys. B 575, 411706 (2019)

    CAS  Article  Google Scholar 

  57. 57.

    D.P. Anil Yadav, S.P. Nehra, Int. J. Appl. Eng. Res. 13(6), 4606–4609 (2018)

    Google Scholar 

  58. 58.

    M. Toulemonde, Nucl. Instrum. Methods B 156(1), 1 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Tripti Gupta) is thankful to UGC, for awarding fellowship to support financially. We yearn to acknowledge the Director (IUAC) New Delhi for providing requisite beam line for the implantation of our samples. Authors also acknowledge NIT Kurukshetra, for making available facilities like XRD, SEM, UV–visible spectrophotometer, PL and I–V measurement facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. P. Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, T., Chauhan, R.P. Impact of N+ ion implantation on the properties of ZnSe thin films. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05335-5

Download citation