Integration of silicon nitride waveguide in Ge-on-insulator substrates for monolithic solutions in optoelectronics


This work presents a novel process to manufacture advanced Germanium-On-Insulator with integrated Silicon Nitride (GOIN) stripes as light waveguide for Ge photonic devices. Through the integration of GOIN stripes, larger tensile strain could be imposed to the bonded Ge layer which may could be used to tailor the bandgap of Ge material for short wave length infrared application. The successful fabrication of advanced GOIN substrate makes the opportunity for monolithic integration of high-performance Ge-based high mobility transistors with photonic components where silicon nitride is the waveguide with low optical loss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    P.P. Absil et al., Silicon photonics integrated circuits: a manufacturing platform for high density, low visible light applications power optical I/Os. Opt. Express 23, 9369–9378 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    M. Smit and K. Williams, Progress in InP-based photonic integration, in Proc. Frontiers Opt., FW5B.4(2015).

  3. 3.

    R. Nagarajan et al., InP photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    H.H. Radamson, L. Thylen, Monolithic Nanoscale Photonics Electronics Integration in Silicon and Other Group IV Elements (Elsevier, Amsterdam, 2014).

    Google Scholar 

  5. 5.

    D.J. Moss et al., New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7, 597–607 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    M.A.G. Porcel et al., Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications. Adv. Opt. Technol. 7(1–2), 57–65 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    A.Z. Subramanian et al., Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photonics Res. 3, B47–B59 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    W.D. Sacher, Y. Huang et al., Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol. 33(4), 901–910 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    R.M. de Ridder et al., Silicon oxynitride planar waveguiding structures for application in optical communication. IEEE J. Sel. Top. Quantum Electron. 4(6), 930–937 (1998)

    Article  Google Scholar 

  10. 10.

    A.K. Sinha, H.J. Levinstein, T.E. Smith, Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. J. Appl. Phys. 49(4), 2434 (1978)

    Article  Google Scholar 

  11. 11.

    A. Ikeda, R.E. Saperstein et al., Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    C.J. Kruckel et al., Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt. Express 23(20), 25827 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    K.J. Ooi et al., Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    J.S. Levy et al., CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    K. Luke, A. Dutt, C.B. Poitras, M. Lipson, Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013)

    Article  Google Scholar 

  16. 16.

    A. Gondarenko, J.S. Levy, M. Lipson, High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    M.H.P. Pfeiffer et al., Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    M.H.P. Pfeiffer et al., Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018)

    Article  Google Scholar 

  19. 19.

    X. Zhao et al., Design impact on the performance of Ge PIN photodetectors. J. Mater. Sci. Mater. Electron. (2019).

    Article  Google Scholar 

  20. 20.

    H. Chen et al., 1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express 24, 4622–4631 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    W. Li et al., Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. APL 109, 241101 (2016)

    Google Scholar 

  22. 22.

    H.H. Radamson, H. Zhou, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiong et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 15555 (2020)

    Article  Google Scholar 

  23. 23.

    H. El Dirani et al., Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band. IEEE Photonics Technol. Lett. 30(4), 355–358 (2018)

    Article  Google Scholar 

  24. 24.

    A. Rahim et al., Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 35(4), 639–649 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, S. Liu, Ultra low temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD. Appl. Surf. Sci. 1, 299 (2014)

    Google Scholar 

  26. 26.

    V. Reboud, A. Gassenq, J.M. Hartmann, J. Widiez, L. Virot, J. Aubin, K. Guilloy, S. Tardif, J.M. Fédéli, N. Pauc, A. Chelnokov, V. Calvo, Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 63, 1–24 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4(8), 527–534 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    W.X. Ni, J.O. Ekberg, K.B. Joelsson, H.H. Radamson, G.D. Henry, A. Shen, A silicon molecular beam epitaxy system dedicated to device-oriented material research. J. Cryst. Growth 157, 285 (1995)

    CAS  Article  Google Scholar 

  29. 29.

    K.H. Lee, S. Bao, G.Y. Chong, Y.H. Tan, E.A. Fitzgerald, C.S. Tan, Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116, 103506 (2014)

    Article  Google Scholar 

  30. 30.

    J.R. Jain et al., Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics. Opt. Mater. Express 1, 1121–1126 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    V. Reboud, A. Gassenq et al., Ultra-high amplified strain on 200 mm optical germanium-on-insulator (GeOI) substrates: towards CMOS compatible Ge lasers. Proc. SPIE 9752, 97520F (2016)

    Article  Google Scholar 

  32. 32.

    Y.D. Lin, K.H. Lee et al., High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform. Photonics Res. 6(1), 46 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    D.D. Cannon, J.F. Liu et al., Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates. Appl. Phys. Lett. 91, 252111 (2007)

    Article  Google Scholar 

  34. 34.

    K.H. Lee, S. Bao et al., Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116, 103506 (2014)

    Article  Google Scholar 

  35. 35.

    H.H. Radamson, K.B. Joelsson, W.X. Ni, J. Birch, J.E. Sundgren, L. Hultman, Strain characterization of Ge1-xSix and heavily V-doped Ge layers on Ge (100) by two-dimensional reciprocal space mapping. J. Cryst. Growth 167(3–4), 495501 (1996)

    Google Scholar 

  36. 36.

    G.V. Hansson, H.H. Radamsson, W.X. Ni, Strain and relaxation in SI-MBE structures studied by reciprocal space mapping using high-resolution X-ray-diffraction. J. Mater. Sci. Mater. Electron. 6, 292–297 (1995)

    CAS  Article  Google Scholar 

  37. 37.

    H.H. Radamson, J. Hallstedt, Application of high-resolution X-ray diffraction for detecting defects in SiGe(C) materials. J. Phys. Condens. Matter. 17, S2315–S2322 (2005)

    CAS  Article  Google Scholar 

  38. 38.

    S.C. Mao, S.H. Tao, Y.L. Xu, X.W. Sun, M.B. Yu, G.Q. Lo, D.L. Kwong, Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express 16, 20809–20816 (2008)

    CAS  Article  Google Scholar 

  39. 39.

    W.D. Sacher, Y. Huang, G.Q. Lo, J.K.S. Poon, Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol. 33, 901–910 (2015)

    CAS  Article  Google Scholar 

Download references


This work was supported in part by the projects of the construction of new research and development institutions (Grant No. 2019B090904015) and the construction of high-level innovation research institute from the Guangdong Greater Bay Area Institute of Integrated Circuit and System (Grant No. 2019B090909006), in part by the National Natural Science Foundation of China (Grant No. 92064002), in part by the National Key Research and Development Program of China (Grant No. 2016YFA0301701), and the Youth Innovation Promotion Association of CAS (Grant No. Y2020037).

Author information



Corresponding authors

Correspondence to Wenjuan Xiong or Henry H. Radamson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Wang, G., Du, Y. et al. Integration of silicon nitride waveguide in Ge-on-insulator substrates for monolithic solutions in optoelectronics. J Mater Sci: Mater Electron (2021).

Download citation