Enhanced critical current density in the nano-sized metallic Au-added Bi1.8Sr2Au0.3Ca1.1Cu2.1Oy (Bi-2212) ceramics by means of optimization of the dwell time at 870 °C


This study investigates how the postannealing process applied to Bi1.8Sr2Au0.3Ca1.1Cu2.1Oy (Bi-2212) ceramics at 870 °C can improve their Jc values. Bi1.8Sr2Au0.3Ca1.1Cu2.1Oy has been selected in the present work as initial composition because nano-sized metallic Au additions at large scale positively affect the superconducting properties of Bi-2212 ceramics due to the enhancement of intergranular coupling between the grains, as reported in the literature. These Bi-2212 ceramics were prepared by the solid-state reaction method, including a heat treatment at 860 °C for 96 h for sintering. Then, the samples in the postannealing stage are exposed at different dwell times (8 h, 16 h, and 32 h) at 870 °C. XRD analysis showed that all the samples have similar chemical composition, with Bi-2212 phase as the major one, and the presence of minor impurity phases such as Au, Bi2CaO4 and Bi4Sr4CaCu3O4. The crystalline size of the samples calculated according to the Debye–Scherrer equation increases with increasing dwell time. Magnetization–temperature (M–T) curves were used to determine the superconducting transition temperatures (Tcmag) of all the samples, showing that they are around 70 K. This means that the dwell-time process applied at 870 °C in the present study does not degrade their transition temperatures. To observe how both diamagnetic character and grain growth of the Bi-2212 phases affect magnetic properties, as a function of the different dwell times at 870 °C, magnetic–hysteresis measurements (M–H) at 15 K were performed. It has been found that the thermal treatment at 870 °C for 32 h favors the formation of the widest hysteresis loop due to better intergrain coupling between grains. Finally, the magnetic critical current density (Jcmag) has been obtained through the data from M–H loops according to the critical Bean model. The highest Jc value, 39.92 × 104 A/cm2 under 0.2 T at 15 K, is higher than the Jc of for the samples with the same composition reported in the literature (13.42 × 104 A/cm2 under 0.15 T at 10 K). These results clearly show that appropriate postannealing processes can significantly improve superconducting properties of Bi-2212 ceramics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209–L210 (1988)

    CAS  Article  Google Scholar 

  2. 2.

    H.S. Kim, R.A. Jeong, G.J. Lee, D.H. Lee, K.S. Ahn, K.H. Kim, Formation of high-Tc phase in Sn-incorporated (Bi, Pb)–Sr–Ca–Cu–O superconducting system. Mater. Chem. Phys. 56, 147–152 (1998)

    CAS  Article  Google Scholar 

  3. 3.

    U. Kölemen, O. Uzun, C. Emeksiz, F. Yılmaz, A. Coşkun, A. Ekicibil, B. Özçelik, Mechanical properties of BSCCO superconductor by Oliver-Pharr method and work of indentation approach. J. Supercond. Nov. Magn. 26, 3215–3219 (2013)

    Article  CAS  Google Scholar 

  4. 4.

    C. Michel, M. Hervieu, M. Borel, M.A. Grandin, F. Deslandes, J. Provost, B. Raveau, Superconductivity in the Bi–Sr–Cu–O system. Z. Phys. B 68, 421–423 (1987)

    CAS  Article  Google Scholar 

  5. 5.

    K. Watanabe, S. Awaji, High field characteristics of critical current densities in high-Tc superconducting films and wires (high field superconductors). Sci. Rep. A 42, 371–373 (1996)

    CAS  Article  Google Scholar 

  6. 6.

    D.C. van der Laan, H.J.N. van Eck, B. Ten Haken, J. Schwartz, H.H.J. ten Kate, Temperature and magnetic field dependence of the critical current of Bi2Sr2Ca2Cu3Ox tape conductors. IEEE Trans. Appl. Supercond. 11, 3345–3348 (2001)

    Article  Google Scholar 

  7. 7.

    B. Özkurt, M.A. Madre, A. Sotelo, M.E. Yakıncı, B. Özçelik, Relationship between growth speed, microstructure, mechanical and electrical properties in Bi-2212/Ag textured composites. J. Supercond. Nov. Magn. 25, 799–804 (2012)

    Article  CAS  Google Scholar 

  8. 8.

    B. Ozkurt, M.A. Madre, A. Sotelo, J.C. Diez, Modification of physical and structural properties of Bi1.8Pb0.4Sr2Ca2.2Cu3Oy ceramics induced by annealing. Physıca B 426, 85–89 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    F.M. Costa, Sh. Rasekh, N.M. Ferreira, A. Sotelo, J.C. Diez, M.A. Madre, Effect of current polarity on BSCCO/Ag ceramics textured by electrically assisted laser floating zone. J. Supercond. Nov. Magn. 26, 943–946 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    V. Lennikov, B. Özkurt, L.A. Angurel, A. Sotelo, B. Özçelik, G.F. de La Fuente, Microstructure and transport properties of Bi-2212 prepared by CO2 laser line scanning. J. Supercond. Nov. Magn. 26, 947–952 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    M.M. Abbas, L.K. Abass, U. Salman, Influences of sintering time on the Tc of Bi2−xCuxPb0.3Sr2Ca2Cu3O10+δ high temperature superconductors. Energy Procedia 18, 215–224 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    T. Honda, T. Wada, M. Sakai, M. Miyajiwa, N. Nishikawa, S. Uchida, K. Uchinokura, S. Tanaka, Preparation of high-Tc 105 K superconducting phase in Bi–Sr–Ca–K–Cu oxide system. Jpn. J. Appl. Phys. 27, L545–L547 (1988)

    CAS  Article  Google Scholar 

  13. 13.

    B.P. Mikhailov, P.E. Kazin, V.V. Lennikov, S.V. Shavkin, G.V. Laskova, A.A. Titov, Effect of fine-particle NbC additions on the structure and superconducting properties of (Bi, Pb)2Sr2Ca2Cu3O10+x ceramics. Inorg. Mater. 6, 753–757 (2001)

    Google Scholar 

  14. 14.

    M. Wakata, S. Takano, F. Munakata, H. Yamauchi, Effects of cation substitution on flux pinning in Bi-2212 superconductors. Cryogenics 32, 1046–1051 (1992)

    CAS  Article  Google Scholar 

  15. 15.

    P. Majewski, H.-L. Su, M. Quilitz, Relationships between the chemical composition and properties of the high-temperature superconductor Bi2+xSr2−yCa1+yCu2O8+δ. J. Mater. Sci. 32, 5137–5141 (1997)

    CAS  Article  Google Scholar 

  16. 16.

    M.A. Madre, H. Amaveda, M. Mora, A. Sotelo, L.A. Angurel, J.C. Diez, Ag doped (Bi1.6Pb0.4)Sr2CaCu2O8+δ textured rods. Bol. Soc. Esp. Ceram. V 47, 148–152 (2008)

    CAS  Article  Google Scholar 

  17. 17.

    S. Heon Lee, Effect of Ag2O doping on the superconductivity of the BiPbSrCaCuO oxide. Mater. Chem. Phys. 75, 166–169 (2002)

    Article  Google Scholar 

  18. 18.

    S.X. Dou, H.K. Liu, Ag-sheathed Bi(Pb)SrCaCuO superconducting tapes. Supercond. Sci. Technol. 6, 297–314 (1993)

    CAS  Article  Google Scholar 

  19. 19.

    G. Yıldırım, Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders. J. Alloy Compd. 699, 247–255 (2017)

    Article  CAS  Google Scholar 

  20. 20.

    N.K. Saritekin et al., Examination of effective nucleation centers for flux pinning of vortices and optimum diffusion annealing temperature for Au-diffusion-doped Bi-2212 polycrystalline compound. J. Alloys Compd. 688, 637–646 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    B. Özkurt, M.A. Madre, A. Sotelo, J.C. Diez, Effect of metallic Ag on the properties of Bi-2212 ceramic superconductors. J. Mater. Sci. Mater. Electron. 24, 3344–3351 (2013)

    Article  CAS  Google Scholar 

  22. 22.

    B. Özkurt, Effect of nano-sized metallic Au additions at large scale on the phase stability of Bi-2212 ceramics. J. Mater. Sci. Mater. Electron. 30, 14547–14553 (2019)

    Article  CAS  Google Scholar 

  23. 23.

    B. Özkurt, Effect of annealing conditions on the superconducting properties of nano-sized metallic Au-added Bi1.8Sr2Au0.2Ca1.1Cu2.1Oy (Bi-2212) ceramics. J. Mater. Sci. Mater. Electron. 31, 11448–11456 (2020)

    Article  CAS  Google Scholar 

  24. 24.

    A. Sotelo, G. Constantinescu, Sh. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, Effect of postannealing treatments on the electrical properties of textured Bi2Sr2.1Ca0.9Cu2O8 superconducting ceramics. J. Supercond. Nov. Magn. 26, 985–990 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    M. EbruKır, B. Özkurt, M. ErsinAytekin, The effect of K-Na co-doping on the formation and particle size of Bi-2212 phase. Physica B 490, 79–85 (2016)

    Article  CAS  Google Scholar 

  26. 26.

    U. Holzwarth, N. Gibson, The Scherrer equation versus the “Debye–Scherrer equation.” Nat. Nanotechnol. 6, 534–534 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    M.M. Abbas, L.K. Abbas, U. Salman, Influences of sintering time on the Tc of Bi2−xCuxPb0.3Sr2Ca2Cu3O10+δ high temperature superconductors. Energy Procedia 18, 215–224 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    O. Bilgili, Y. Selamet, K. Kocabaş, Effects of Li substitution in Bi-2223 superconductors. J. Supercond. Nov. Magn. 21, 439–449 (2008)

    CAS  Article  Google Scholar 

  29. 29.

    B. Özkurt, The influence of Na addition on the mechanical properties of Bi-2212 superconductors. J. Supercond. Nov. Magn. 27, 2407–2414 (2014)

    Article  CAS  Google Scholar 

  30. 30.

    B. Özkurt, Enhancement in superconducting transition temperature and Jc values in Na-doped Bi2Sr2Ca1Cu2−xNaxOy superconductors. J. Mater. Sci. Mater. Electron. 24, 2426–2431 (2013)

    Article  CAS  Google Scholar 

  31. 31.

    B. Özçelik, M. Gürsul, A. Sotelo, M.A. Madre, Improvement of superconducting properties in Na-doped BSCCO superconductor. J. Mater. Sci. Mater. Electron. 26, 441–447 (2015)

    Article  CAS  Google Scholar 

  32. 32.

    B. Özkurt, A significant enhancement in Jc values through excessive Na doping in Bi2Sr2Ca1Cu2−xNaxOy superconductors. J. Supercond. Nov. Magn. 28, 1501–1506 (2015)

    Article  CAS  Google Scholar 

  33. 33.

    D.H. Tran, A.T. Pham, T.M. Le, D.T.K. Anh, Y.T. Phan, N.K. Man, D. Pham, W.-N. Kang, Enhanced flux pinning properties in Bi1.6Pb0.4Sr2−xKxCa2Cu3O10+δ compounds. J. Mater. Sci. Mater. Electron. 30, 8233–8238 (2019)

    CAS  Article  Google Scholar 

  34. 34.

    G.D. Gu, K. Takamuku, N. Koshizuka, S. Tanaka, Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth 130, 325–329 (1993)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Huang, G.F. de la Fuente, A. Sotelo, A. Badía, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltrán, F. Sapiña, A. Beltrán, (Bi, Pb)2Sr2Ca2Cu3O10+δ superconductor composites: ceramics vs. fibers. Physica C 185–189, 2401–2402 (1991)

    Article  Google Scholar 

  36. 36.

    S. Li, W. Gao, H. Cooper et al., The effect of mechanical deformation on the phase transformation of BSCCO superconductors. Physica C 356, 197–204 (2001)

    CAS  Article  Google Scholar 

  37. 37.

    I.A. Parinov, Microstructure and Properties of High-Temperature Superconductors (Springer, Berlin, 2007), p. 283. https://doi.org/10.1007/978-3-540-70977-0

    Google Scholar 

  38. 38.

    G. Corsmit, M.A. Van Driel, R.J. Elsenaar, W. Van De Guchte, A.M. Hoogenboom, J.C. Sens, Thermal analysis of bismuth germanate compounds. J. Cryst. Growth 75, 551–560 (1986)

    CAS  Article  Google Scholar 

  39. 39.

    A. Sotelo, M. Mora, M.A. Madre, J.C. Diez, L.A. Angurel, G.F. de la Fuente, Ag distribution in thick Bi-2212 floating zone textured rods. J. Eur. Ceram. Soc. 25, 2947–2950 (2005)

    CAS  Article  Google Scholar 

  40. 40.

    P. Kameli, H. Salamati, M. Eslami, The effect of sintering temperature on the intergranular properties of Bi2223 superconductors. Solid State Commun. 137, 30–35 (2006)

    CAS  Article  Google Scholar 

  41. 41.

    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  42. 42.

    I.B. Bobylev, E.G. Gerasimov, N.A. Zyuzeva, Effect of low-temperature annealing on the critical parameters of highly textured YBa2Cu3Oy. Phys. Solid State 54, 1741–1746 (2012)

    CAS  Article  Google Scholar 

  43. 43.

    R.A. Serway, Principles of Physics (Saunders College Publishers, London, 1998) p. 602. ISBN 0-03-020457-7

  44. 44.

    C. Bueno-Ferrer, S. Parres-Esclapez, D. Lozano-Castelló, A. Bueno-López, Relationship between surface area and crystal size of pure and doped cerium oxides. J. Rare Earth 28, 647–653 (2010)

    CAS  Article  Google Scholar 

  45. 45.

    M. Roumié, S. Marhaba, R. Awad, M. Kork, I. Hassan, R. Mawassi, Effect of Fe2O3 nano-oxide addition on the superconducting properties of the (Bi, Pb)-2223 phase. J. Supercond. Nov. Magn. 27, 143–153 (2014)

    Article  CAS  Google Scholar 

  46. 46.

    N.A. Yahya, R. Abd-Shukor, Effect of different nanosizedMgO on the transport critical current density of Bi1.6Pb0.4Sr2Ca2Cu3O10 superconductor. J. Supercond. Nov. Magn. 27, 329–335 (2014)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Berdan Özkurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özkurt, B. Enhanced critical current density in the nano-sized metallic Au-added Bi1.8Sr2Au0.3Ca1.1Cu2.1Oy (Bi-2212) ceramics by means of optimization of the dwell time at 870 °C. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05322-w

Download citation