Solvothermal synthesis of CoMoO4 nanostructures for electrochemical applications

Abstract

Metal molybdate families such as AMoO4 [A = Ni, Co, Cu, Mn] in transition metal series have received considerable great attention in energy storage and conversion applications. Among these metal molybdates, CoMoO4 is widely used in various industrial applications. CoMoO4 was prepared using solvothermal method. Monoclinic CoMoO4 was confirmed. Metal–oxygen (M–O) bonding, crystal defects, chemical bonding, surface morphology, particle size, and elemental composition were analyzed. The specific capacitance of prepared electrodes was estimated and obtained the high specific capacitance of 561 F/g, 768 F/g, and 1039 F/g, respectively. Long-term stability of CoMoO4 under ethanol solvent revealed the capacitance retention of about 96% even after 16 h. Hence, CoMoO4 nanostructures will be a probable electrode material for water-splitting applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M. Bottero, M. Bravi, F. Dell’Anna, C. Marmolejo-Duarte, Springer, Cham, 167–179 (2020).

  2. 2.

    M. Javid, M. Khan, Environ. Sci and Pollut Res. 27(3), 3224–3236 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    M.A. Ahmed, F. Mohamed, A.M. Ashraf, M. Shaban, A. Aslam Parwaz Khan, A.M. Asiri, Chemosphere 238, 124554 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Ch. Venkata Reddy, I. Neelakanta Reddy, V.V.N. Harish, K. Raghava Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Chemosphere 239, 124766 (2020)

    Article  Google Scholar 

  5. 5.

    S. Aslam, R. Ur, H. Rehman Sagar, G. Kumar, F. Zhang, M. Nosheen, N. Namvari, M. Mahmood, Y. Qiu. Zhang, Chemosphere 245, 125607 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    G.V. Fortunato, M.S. Kronka, A.J. dos Santos, M. Ledendecker, M.R.V. Lanza, Chemosphere 259, 127523 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Shi, J. Huang, G. Zeng, W. Cheng, J. Hu, L. Shi, K. Yi, Chemosphere 230, 40–50 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    X. Yao, X. Hu, Y. Liu, X. Wang, X. Hong, X. Chen, S.C. Pillai, D.D. Dionysiou, D. Wang, Chemosphere 261, 127759 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    W.C. Oh, D.C. Tien Nguyen, Y. Areerob, Chemosphere 239, 124825 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    L. Li, P. Wang, Q. Shao, X. Huang, Chem. Soc. Rev. (2020).

  11. 11.

    W. Dai, K. Ren, Y.A. Zhu, Y. Pan, J. Yu, T. Lu, J. Alloys Compd. 156252 (2020).

  12. 12.

    T. Sun, P. Liu, Y. Zhang, Z. Chen, C. Zhang, X. Guo, C. Ma, Y. Gao, S. Zhang, Chem. Eng. J. 124591 (2020).

  13. 13.

    A.R. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, A.C.S. Appl, Energy Mater. 3(1), 66–98 (2020)

    CAS  Google Scholar 

  14. 14.

    A. Abdelwahab, F. Carrasco-Marín, A.F. Pérez-Cadenas, Materials 13(16), 3531 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    M.P. Chavhan, S.R. Sethi, S. Ganguly, Electrochim. Acta. 136277 (2020).

  16. 16.

    N. Kumari, V.K.V.P. Srirapu, A. Kumar, R.N. Singh, Int. J. Hydrog. Energy (2020).

  17. 17.

    B.K. Satpathy, R. Barik, A.K. Padhy, M. Mohapatra, Ionics 26(3), 1443–1455 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Q. Zhang, W. Chen, G. Chen, J. Huang, C. Song, S. Chu, R. Zhang, G. Wang, C. Li, K.K. Ostrikov, 261, 118254 (2020).

  19. 19.

    Y. Xu, L. Xie, D. Li, R. Yang, D. Jiang, M. Chen, A.C.S. Sustain, Chem. Eng. 6(12), 16086–16095 (2018)

    CAS  Google Scholar 

  20. 20.

    B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, R. Wu, Chem. Eng. J. 124926 (2020).

  21. 21.

    H. Liu, D. Zhao, P. Hu, K. Chen, X. Wu, D. Xue, Mater. Today Phys. 100197 (2020).

  22. 22.

    Q.S. Zhou, X.W. Peng, L.X. Zhong, R.C. Sun, Environ Sci Ecotechnol. 1, 100004 (2020)

    Article  Google Scholar 

  23. 23.

    T. Ouyang, W. Xiao‐Tong, M. Xiu‐Qiong, C. An‐Na, T. Zi‐Yuan, L. Zhao‐Qing. Angew Chem Int Ed (2020).

  24. 24.

    L. Hou, H. Hua, S. Liu, G. Pang, C. Yuan, New J Chem 39(7), 5507–5512 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    M. Rodriguez, M.C. Stolzemburg, C.G. Bruziquesi, A.C. Silva, C.G. Abreu, K.P. Siqueira, L.C. Oliveira, M.S. Pires, L.C. Lacerda, T.C. Ramalho, A. Dias, CrystEngComm 20(37), 5592–5601 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Z. Xu, Z. Li, X. Tan, C.M. Holt, L. Zhang, B.S. Amirkhiz, D. Mitlin, RSC adv 2(7), 2753–2755 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    D. Chen, K. Tang, F. Li, H. Zheng, Cryst growth des. 6(1), 247–252 (2006)

    CAS  Article  Google Scholar 

  28. 28.

    V. Umapathy, P. Neeraja, J. Nanosci. Nanotechnol. 16(3), 2960–2966 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    I. Kashif, A.A. Soliman, Z.M. El-Bahy, J alloys compd 452(2), 384–388 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    T.A. Saleh, S.A. Al-Hammadi, A. Tanimu, K. Alhooshani, J. Colloid Interface Sci. 513, 779–787 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    D.P. Joshi, G. Pant, N. Arora, S. Nainwal, Heliyon 3(2), e00253 (2017)

    Article  Google Scholar 

  32. 32.

    W. Luo, J. Wang, Z. Zhang, D. Lu, Y. Yu, Y. Ji, H. Qiao, X. Qi, Y. Liu, J. Mater. Sci: Mater Electron, 1–9 (2020).

  33. 33.

    M. Kumar, R. Singh, H. Khajuria, H.N. Sheikh, J Mater Sci: Mater Electron 28(13), 9423–9434 (2017)

    CAS  Google Scholar 

  34. 34.

    Y. Zhang, Q. Shao, S. Long, X. Huang, Nano Energy 45, 448–455 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J Ceram Pro Res. 3, 146 (2002)

    Google Scholar 

  36. 36.

    J. Meng, J. Fu, X. Yang, M. Wei, S. Liang, H.Y. Zang, H. Tan, Y. Wang, Y. Li, Inorg. Chem. Front. 4(11), 1791–1797 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    G. Jiang, L. Li, Z. Huang, Z. Xie, B. Cao, J Alloys Compd. 790, 891–899 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    B. Ramulu, G. Nagaraju, S. Chandra Sekhar, S.K. Hussain, D. Narsimulu, J.S. Yu, ACS Appl Mater Interfaces 11(44), 41245–41257 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    T. Watcharatharapong, M. Minakshi Sundaram, S. Chakraborty, D. Li, G.M. Shafiullah, R.D. Aughterson, R. Ahuja, ACS Appl Mater Interfaces 9(21), 17977–17991 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    G.K. Veerasubramani, K. Krishnamoorthy, S.J. Kim, J. Power Sources 306, 378–386 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    U. Joshi, J. Lee, C. Giordano, S. Malkhandi, B.S. Yeo, Phys Chem Chem Phys 18(31), 21548–21553 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    J. Bao, Z. Wang, J. Xie, L. Xu, F. Lei, M. Guan, Y. Zhao, Y. Huang, H. Li, Chem Commun. 55(24), 3521–3524 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    D. Yu, Z. Zhang, Y. Teng, X. Zhao, X. Liu, J Alloys Compd, 155244 (2020).

  44. 44.

    M.Q. Yu, L.X. Jiang, H.G. Yang, Chem Commun 51(76), 14361–14364 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by RUSA Phase 2 grant, UGC-SAP, DST-FIST, and DST-PURSE grants. This project was supported by Researchers Supporting Project Number (RSP-2020/7) King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar or G. Ravi or Dhayalan Velauthapillai.

Ethics declarations

Conflict of interest

All authors hereby declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rani, B.J., Swathi, S., Yuvakkumar, R. et al. Solvothermal synthesis of CoMoO4 nanostructures for electrochemical applications. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05319-5

Download citation