The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization

Abstract

The aim of this research is to investigate the effect of butanol isomers used as cosurfactants in the microemulsion polymerization of pyrrole, on the sensitivity of the sensing layers made of polypyrrole (PPy) towards ammonia gas. PPy nanoparticles were synthesized via microemulsion polymerization using sodium dodecyl sulfate (SDS), butanol isomers (n-butanol, 2-butanol and t-butanol) and Ammonium persulfate (APS) as a surfactant and a dopant, cosurfactants, and an oxidant respectively. Design of Experiments (DoE) method was followed in order to explore the effect of isomer type of cosurfactant and surfactant concentration on sensor sensitivity at room temperature towards acetone, ethanol, methanol and ammonia vapors. Under optimal conditions, the sensitivity towards ammonia reached 24.1% at 25 ppm with a response time of 5 s, and a recovery time of 442 s. On the other hand, the sensitivity to all other volatile organic compounds (VOCs) up to 500 ppm was insignificant. Scanning electron microscopy (SEM) micrographs showed that films are formed from nanoparticles with an average diameter ranging from 10 to 20 nm. Absorption spectra in the UV–vis range were all similar. This indicates that butanol isomers have no effect on the optical properties of PPy. Nanostructured SDS doped PPy films prepared by microemulsion polymerization, show good sensing performance towards ammonia at room temperature which make this polymerization method very promising candidate for the fabrication of ammonia sensors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Hazardous substance fact sheet (ammonia) New Jersey Department of Health. www.state.nj.us/health/eoh/rtkweb/documents/fs/0084.pdf. Accessed Feb 2020.

  2. 2.

    M.S. Freund, N.S. Lewis, Proc. Natl. Acad. Sci. USA 92, 2652 (1995)

    CAS  Article  Google Scholar 

  3. 3.

    B. Lakard, S. Carquigny, O. Segut, T. Patois, S. Lakard, Metals 5, 1371 (2015)

    Article  Google Scholar 

  4. 4.

    L.G. Paterno, L.H.C. Mattoso, J. Appl. Polym. Sci. 83, 1309 (2001)

    Article  Google Scholar 

  5. 5.

    M. Brie, R. Turcu, C. Neamtu, S. Pruneanu, Sens. Actuators B Chem. 37, 119 (1996)

    CAS  Article  Google Scholar 

  6. 6.

    K.K.L. Wong, Z. Tang, J.K.O. Sin, P.C.H. Chan, P.W. Cheung, H. Hiraoka. IEEE (ICSE) 217 (1996)

  7. 7.

    N. Chartuprayoon, C.M. Hangarter, Y. Rheem, H. Jung, N.V. Myung, J. Phys. Chem. C 114, 11103 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    K.H. Masri, H.A. Kalaleh, A. Alhassan, J. Electron. Mater. 48, 5967 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, M. Li, J. Liu, Sens. Actuators B Chem. 142, 204 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    S. Singh, S. Sharma, R.C. Singh, S. Sharma, Appl. Surf. Sci. 532, 147373 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    D. Punetha, S.K. Pandey, IEEE Sensors J. 20, 1738 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    R.S. Andre, D. Kwak, Q. Dong, W. Zhong, D.S. Correa, L.H.C. Mattoso, Y. Lei, Sensors 18, 1058 (2018)

    Article  Google Scholar 

  13. 13.

    P. Mavinakuli, S. Wei, Q. Wang, A.B. Karki, S. Dhage, Z. Wang, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 3874 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    E.J. Oh, K.S. Jang, A.G. Macdiarmid, Synth. Met. 125, 267 (2001)

    Article  Google Scholar 

  15. 15.

    P. Dallas, D. Niarchos, D. Vrbanic, N. Boukos, S. Pejovnik, Ch. Trapalis, D. Petridis, Polymer 48, 2007 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    S. Ghosh, G.A. Bowmaker, R.P. Cooney, J.M. Seakins, Synth. Met. 95, 63 (1998)

    CAS  Article  Google Scholar 

  17. 17.

    A.C.A. Lewandowska, J. Soloducho, A.G. Drzazga, M. Szablewski, IEEE Trans. Dielectr. Electr. Insul. 8, 559 (2001)

    Article  Google Scholar 

  18. 18.

    L. Geng, Y. Zhao, X. Huang, S.H. Wang, S. Zhang, W. Huang, S.H. Wu, Synth. Met. 156, 1078 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    D.Y. Kim, J.Y. Lee, D.K. Moon, C.Y. Kim, Synth. Met. 69, 471 (1995)

    CAS  Article  Google Scholar 

  20. 20.

    O.S. Kwon, J.Y. Hong, S.J. Park, Y. Jang, J. Jang, J. Phys. Chem. C 114, 18874 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    L. Geng, Sh. Wub, Mater. Res. Bull. 48, 4339 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    X. Yang, L. Li, Y. Zhaob, Synth. Met. 160, 1822 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    M. Joulazadeh, A.H. Navarchian, Synth. Met. 210, 404 (2015)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hussam-Aldeen Kalaleh or Khaled Masri.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalaleh, HA., Masri, K. The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05318-6

Download citation