High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method


In the past few years, there has been a significant demand for the development of high dielectric constant polymer composites for flexible electronic applications. However, the development of these flexible and stretchable dielectrics through simple and economical processing methods still remains challenging. In the present work, we have addressed this problem by developing high dielectric constant, flexible, calcium copper titanate (CCTO)/ thermoplastic polyurethane (TPU) composites through a simple and cost-effective casting method. At room temperature, 40 vol% CCTO/TPU composite exhibited a dielectric constant of 56 (1 kHz) along with an elongation at break of 202%, making it a promising dielectric material for flexible electronics. To our knowledge this is the best among the reported works in ceramic/ polyurethane composites, exhibiting a remarkable combination of high dielectric constant, excellent elongation at break and good mechanical strength. A prototype embedded capacitor was fabricated on copper cladded printed circuit board (PCB) by spin coating and a specific capacitance of 1.05 nF/cm2 was achieved at 1 kHz.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    K.D. Harris, A.L. Elias, H.J. Chung, J. Mater. Sci. 51, 2771 (2016). https://doi.org/10.1007/s10853-015-9643-3

    CAS  Article  Google Scholar 

  2. 2.

    Z. Liang, M. Liu, L. Shen, L. Lu, C. Ma, X. Lu, X. Lou, C.L. Jia, A.C.S. Appl, Mater. Inter. 11, 5247 (2019). https://doi.org/10.1021/acsami.8b18429

    CAS  Article  Google Scholar 

  3. 3.

    S.K. Bhattacharya, R.R. Tummala, Microelectron. J. 32, 11 (2001). https://doi.org/10.1016/S0026-2692(00)00104-X

    CAS  Article  Google Scholar 

  4. 4.

    S. Ogitani, S.A. Bidstrup-Allen, P.A. Kohl, IEEE Trans. Adv. Packag. 23, 313 (2000). https://doi.org/10.1109/6040.846650

    CAS  Article  Google Scholar 

  5. 5.

    R.K. Goyal, S.S. Katkade, D.M. Mule, Compos. B. Eng. 44, 128 (2013). https://doi.org/10.1016/j.compositesb.2012.06.019

    CAS  Article  Google Scholar 

  6. 6.

    A. Jain, P. KJ, A.K. Sharma, A. Jain, R. PN, Polym. Eng. Sci. 55, 1589 (2015). https://doi.org/10.1002/pen.24088

    CAS  Article  Google Scholar 

  7. 7.

    P. Mishra, P. Kumar, Compos Sci Technol. 88, 26 (2013). https://doi.org/10.1016/j.compscitech.2013.08.020

    CAS  Article  Google Scholar 

  8. 8.

    B.S. Prakash, K.B.R. Varma, Compos Sci Technol. 67, 2363 (2007). https://doi.org/10.1016/j.compscitech.2007.01.010

    CAS  Article  Google Scholar 

  9. 9.

    Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Adv. Mater. 21, 2077 (2009). https://doi.org/10.1002/adma.200803427

    CAS  Article  Google Scholar 

  10. 10.

    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Comp. Sci. Tech. 70, 539 (2010). https://doi.org/10.1016/j.compscitech.2009.12.014

    CAS  Article  Google Scholar 

  11. 11.

    A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, Mater. Res. Bull. 70, 735 (2015). https://doi.org/10.1016/j.materresbull.2015.05.030

    CAS  Article  Google Scholar 

  12. 12.

    W. Wu, Sci. Technol. Adv. Mater. 20, 187 (2019). https://doi.org/10.1080/14686996.2018.1549460

    CAS  Article  Google Scholar 

  13. 13.

    G. Gallone, F. Carpi, D. De Rossi, G. Levita, A. Marchetti, Mater. Sci. Eng. C 27, 110 (2007). https://doi.org/10.1016/j.msec.2006.03.003

    CAS  Article  Google Scholar 

  14. 14.

    W. Wan, J. Luo, C.E. Huang, J. Yang, Y. Feng, W.X. Yuan, Y. Ouyang, D. Chen, T. Qiu, Ceram. Int. 44, 5086 (2018). https://doi.org/10.1016/j.ceramint.2017.12.108

    CAS  Article  Google Scholar 

  15. 15.

    H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8, 12977 (2016). https://doi.org/10.1039/C6NR02216B

    CAS  Article  Google Scholar 

  16. 16.

    M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, J. Spectrosc. (Hindawi) (2016). https://doi.org/10.1155/2016/7520741

    Article  Google Scholar 

  17. 17.

    P. Thomas, K. Dwarakanath, K.B.R. Varma, Synth. Met 159(19), 2128 (2009). https://doi.org/10.1016/j.synthmet.2009.08.001

    CAS  Article  Google Scholar 

  18. 18.

    K.C. Pradhan, P.L. Nayak, Adv. Appl. Sci. Res. 3, 3045 (2012)

    CAS  Google Scholar 

  19. 19.

    M. Asensio, V. Costa, A. Nohales, O. Bianchi, C.M. Gómez, Polymers 11, 1910 (2019). https://doi.org/10.3390/polym11121910

    CAS  Article  Google Scholar 

  20. 20.

    Y. Ti, Q. Wen, D. Chen, J. Appl. Polym. Sci. 133, 43069 (2016). https://doi.org/10.1002/app.43069

    CAS  Article  Google Scholar 

  21. 21.

    V. Drishya, A.N. Unnimaya, R. Naveenraj, E.K. Suresh, R. Ratheesh, Int. J. Appl. Ceram. Technol. 13, 810 (2016). https://doi.org/10.1111/ijac.12554

    CAS  Article  Google Scholar 

  22. 22.

    S.H. Xie, B.K. Zhu, X.Z. Wei, Z.K. Xu, Y.Y. Xu, Compos. Part A. Appl. Sci. Manuf. 36, 1152 (2005). https://doi.org/10.1016/j.compositesa.2004.12.010

    CAS  Article  Google Scholar 

  23. 23.

    H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, Z. Guo, J. Mater. Chem. C 5, 73 (2017). https://doi.org/10.1039/C6TC03713E

    CAS  Article  Google Scholar 

  24. 24.

    J.C.Q. Amado, J. Res. Updates Polym. Sci. 8, 85 (2019). https://doi.org/10.5772/intechopen.87039

    CAS  Article  Google Scholar 

  25. 25.

    S. Salaeh, N. Muensit, P. Bomlai, C. Nakason, J. Mater. Sci. 46, 1723 (2011). https://doi.org/10.1007/s10853-010-4990-6

    CAS  Article  Google Scholar 

  26. 26.

    K.B. Nilagiri Balasubramanian, T. Ramesh, Polym. Adv. Technol 29, 1568 (2018). https://doi.org/10.1002/pat.4280

    CAS  Article  Google Scholar 

  27. 27.

    X. He, J. Zhou, L. Jin, X. Long, H. Wu, L. Xu, Y. Gong, W. Zhou, Materials 13, 3341 (2020). https://doi.org/10.3390/ma13153341

    CAS  Article  Google Scholar 

  28. 28.

    P. Hu, Y. Song, H. Liu, Y. Shen, Y. Lin, C.-W. Nan, J. Mater. Chem. A 1, 1688 (2013). https://doi.org/10.1039/C2TA00948J

    CAS  Article  Google Scholar 

  29. 29.

    J.C. Maxwell-Garnett, Phil. Trans. R. Soc. Lond. A. 203, 385 (1904). https://doi.org/10.1098/rspl.1904.0058

    Article  Google Scholar 

  30. 30.

    B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2(2), 510 (2014). https://doi.org/10.1039/C3TA14107A

    CAS  Article  Google Scholar 

  31. 31.

    H. Frolich, Theory of Dielectrics (Clarendon Press, Oxford, 1949).

    Google Scholar 

  32. 32.

    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539 (2010). https://doi.org/10.1016/j.compscitech.2009.12.014

    CAS  Article  Google Scholar 

  33. 33.

    Y. Rao, J. Qu, T. Marinis, C.P. Wong, IEEE. Trans. Compon. Packag. Technol. 23, 680 (2000). https://doi.org/10.1109/6144.888853

    CAS  Article  Google Scholar 

  34. 34.

    T. Yamada, T. Ueda, T. Kitayama, J. Appl. Phys. 53, 4328 (1982). https://doi.org/10.1063/1.331211

    CAS  Article  Google Scholar 

  35. 35.

    M.N. Khan, N. Jelani, C. Li, J. Khaliq, Ceram. Inter. 43(4), 3923 (2017). https://doi.org/10.1016/j.ceramint.2016.12.061

    CAS  Article  Google Scholar 

  36. 36.

    M.P.F. Graça, K.D.A. Saboia, F. Amaral, L.C. Costa, Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/6067519

    Article  Google Scholar 

  37. 37.

    H. Zewdie, Bull. Chem. Soc. Ethiop. 12, 159 (1998). https://doi.org/10.4314/bcse.v12i2.21046

    CAS  Article  Google Scholar 

  38. 38.

    L.J. Romasanta, P. Leret, L. Casaban, M. Hernández, A. Miguel, J.F. Fernández, J.M. Kenny, M.A. Lopez-M, R. Verdejo, J. Mater. Chem. 22, 24705 (2012). https://doi.org/10.1039/C2JM34674E

    CAS  Article  Google Scholar 

  39. 39.

    Y. Tang, P. Zhang, M. Zhu, J. Li, Y. Li, Z. Wang, L. Huang, Materials 12(24), 4112 (2019). https://doi.org/10.3390/ma12244112

    CAS  Article  Google Scholar 

  40. 40.

    T. Zhang, Y.J. Lei, J. Yin, J. Du, P. Yu, Ceram. Int. 45, 13951 (2019). https://doi.org/10.1016/j.ceramint.2019.04.093

    CAS  Article  Google Scholar 

  41. 41.

    M.S.D. Satia, M. Jaafar, J. Appl. Polym. Sci. 133, 16 (2016). https://doi.org/10.1002/APP.43313

    Article  Google Scholar 

Download references


The authors gratefully acknowledge Department of Science and Technology (DST, WOS-A, SR/WOS-A/ET-42/2016), Government of India for the financial support.


This work is part of a WOS-A project (Ref. No.: SR/WOSA/ET-42/2016) funded by the Department of Science and Technology (DST), Government of India.

Author information



Corresponding author

Correspondence to Seema Ansari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Variar, L., Muralidharan, M.N., Narayanankutty, S.K. et al. High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05311-z

Download citation