Abstract
In the past few years, there has been a significant demand for the development of high dielectric constant polymer composites for flexible electronic applications. However, the development of these flexible and stretchable dielectrics through simple and economical processing methods still remains challenging. In the present work, we have addressed this problem by developing high dielectric constant, flexible, calcium copper titanate (CCTO)/ thermoplastic polyurethane (TPU) composites through a simple and cost-effective casting method. At room temperature, 40 vol% CCTO/TPU composite exhibited a dielectric constant of 56 (1 kHz) along with an elongation at break of 202%, making it a promising dielectric material for flexible electronics. To our knowledge this is the best among the reported works in ceramic/ polyurethane composites, exhibiting a remarkable combination of high dielectric constant, excellent elongation at break and good mechanical strength. A prototype embedded capacitor was fabricated on copper cladded printed circuit board (PCB) by spin coating and a specific capacitance of 1.05 nF/cm2 was achieved at 1 kHz.
This is a preview of subscription content, access via your institution.










References
- 1.
K.D. Harris, A.L. Elias, H.J. Chung, J. Mater. Sci. 51, 2771 (2016). https://doi.org/10.1007/s10853-015-9643-3
- 2.
Z. Liang, M. Liu, L. Shen, L. Lu, C. Ma, X. Lu, X. Lou, C.L. Jia, A.C.S. Appl, Mater. Inter. 11, 5247 (2019). https://doi.org/10.1021/acsami.8b18429
- 3.
S.K. Bhattacharya, R.R. Tummala, Microelectron. J. 32, 11 (2001). https://doi.org/10.1016/S0026-2692(00)00104-X
- 4.
S. Ogitani, S.A. Bidstrup-Allen, P.A. Kohl, IEEE Trans. Adv. Packag. 23, 313 (2000). https://doi.org/10.1109/6040.846650
- 5.
R.K. Goyal, S.S. Katkade, D.M. Mule, Compos. B. Eng. 44, 128 (2013). https://doi.org/10.1016/j.compositesb.2012.06.019
- 6.
A. Jain, P. KJ, A.K. Sharma, A. Jain, R. PN, Polym. Eng. Sci. 55, 1589 (2015). https://doi.org/10.1002/pen.24088
- 7.
P. Mishra, P. Kumar, Compos Sci Technol. 88, 26 (2013). https://doi.org/10.1016/j.compscitech.2013.08.020
- 8.
B.S. Prakash, K.B.R. Varma, Compos Sci Technol. 67, 2363 (2007). https://doi.org/10.1016/j.compscitech.2007.01.010
- 9.
Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Adv. Mater. 21, 2077 (2009). https://doi.org/10.1002/adma.200803427
- 10.
P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Comp. Sci. Tech. 70, 539 (2010). https://doi.org/10.1016/j.compscitech.2009.12.014
- 11.
A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, Mater. Res. Bull. 70, 735 (2015). https://doi.org/10.1016/j.materresbull.2015.05.030
- 12.
W. Wu, Sci. Technol. Adv. Mater. 20, 187 (2019). https://doi.org/10.1080/14686996.2018.1549460
- 13.
G. Gallone, F. Carpi, D. De Rossi, G. Levita, A. Marchetti, Mater. Sci. Eng. C 27, 110 (2007). https://doi.org/10.1016/j.msec.2006.03.003
- 14.
W. Wan, J. Luo, C.E. Huang, J. Yang, Y. Feng, W.X. Yuan, Y. Ouyang, D. Chen, T. Qiu, Ceram. Int. 44, 5086 (2018). https://doi.org/10.1016/j.ceramint.2017.12.108
- 15.
H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8, 12977 (2016). https://doi.org/10.1039/C6NR02216B
- 16.
M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, J. Spectrosc. (Hindawi) (2016). https://doi.org/10.1155/2016/7520741
- 17.
P. Thomas, K. Dwarakanath, K.B.R. Varma, Synth. Met 159(19), 2128 (2009). https://doi.org/10.1016/j.synthmet.2009.08.001
- 18.
K.C. Pradhan, P.L. Nayak, Adv. Appl. Sci. Res. 3, 3045 (2012)
- 19.
M. Asensio, V. Costa, A. Nohales, O. Bianchi, C.M. Gómez, Polymers 11, 1910 (2019). https://doi.org/10.3390/polym11121910
- 20.
Y. Ti, Q. Wen, D. Chen, J. Appl. Polym. Sci. 133, 43069 (2016). https://doi.org/10.1002/app.43069
- 21.
V. Drishya, A.N. Unnimaya, R. Naveenraj, E.K. Suresh, R. Ratheesh, Int. J. Appl. Ceram. Technol. 13, 810 (2016). https://doi.org/10.1111/ijac.12554
- 22.
S.H. Xie, B.K. Zhu, X.Z. Wei, Z.K. Xu, Y.Y. Xu, Compos. Part A. Appl. Sci. Manuf. 36, 1152 (2005). https://doi.org/10.1016/j.compositesa.2004.12.010
- 23.
H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, Z. Guo, J. Mater. Chem. C 5, 73 (2017). https://doi.org/10.1039/C6TC03713E
- 24.
J.C.Q. Amado, J. Res. Updates Polym. Sci. 8, 85 (2019). https://doi.org/10.5772/intechopen.87039
- 25.
S. Salaeh, N. Muensit, P. Bomlai, C. Nakason, J. Mater. Sci. 46, 1723 (2011). https://doi.org/10.1007/s10853-010-4990-6
- 26.
K.B. Nilagiri Balasubramanian, T. Ramesh, Polym. Adv. Technol 29, 1568 (2018). https://doi.org/10.1002/pat.4280
- 27.
X. He, J. Zhou, L. Jin, X. Long, H. Wu, L. Xu, Y. Gong, W. Zhou, Materials 13, 3341 (2020). https://doi.org/10.3390/ma13153341
- 28.
P. Hu, Y. Song, H. Liu, Y. Shen, Y. Lin, C.-W. Nan, J. Mater. Chem. A 1, 1688 (2013). https://doi.org/10.1039/C2TA00948J
- 29.
J.C. Maxwell-Garnett, Phil. Trans. R. Soc. Lond. A. 203, 385 (1904). https://doi.org/10.1098/rspl.1904.0058
- 30.
B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2(2), 510 (2014). https://doi.org/10.1039/C3TA14107A
- 31.
H. Frolich, Theory of Dielectrics (Clarendon Press, Oxford, 1949).
- 32.
P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539 (2010). https://doi.org/10.1016/j.compscitech.2009.12.014
- 33.
Y. Rao, J. Qu, T. Marinis, C.P. Wong, IEEE. Trans. Compon. Packag. Technol. 23, 680 (2000). https://doi.org/10.1109/6144.888853
- 34.
T. Yamada, T. Ueda, T. Kitayama, J. Appl. Phys. 53, 4328 (1982). https://doi.org/10.1063/1.331211
- 35.
M.N. Khan, N. Jelani, C. Li, J. Khaliq, Ceram. Inter. 43(4), 3923 (2017). https://doi.org/10.1016/j.ceramint.2016.12.061
- 36.
M.P.F. Graça, K.D.A. Saboia, F. Amaral, L.C. Costa, Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/6067519
- 37.
H. Zewdie, Bull. Chem. Soc. Ethiop. 12, 159 (1998). https://doi.org/10.4314/bcse.v12i2.21046
- 38.
L.J. Romasanta, P. Leret, L. Casaban, M. Hernández, A. Miguel, J.F. Fernández, J.M. Kenny, M.A. Lopez-M, R. Verdejo, J. Mater. Chem. 22, 24705 (2012). https://doi.org/10.1039/C2JM34674E
- 39.
Y. Tang, P. Zhang, M. Zhu, J. Li, Y. Li, Z. Wang, L. Huang, Materials 12(24), 4112 (2019). https://doi.org/10.3390/ma12244112
- 40.
T. Zhang, Y.J. Lei, J. Yin, J. Du, P. Yu, Ceram. Int. 45, 13951 (2019). https://doi.org/10.1016/j.ceramint.2019.04.093
- 41.
M.S.D. Satia, M. Jaafar, J. Appl. Polym. Sci. 133, 16 (2016). https://doi.org/10.1002/APP.43313
Acknowledgements
The authors gratefully acknowledge Department of Science and Technology (DST, WOS-A, SR/WOS-A/ET-42/2016), Government of India for the financial support.
Funding
This work is part of a WOS-A project (Ref. No.: SR/WOSA/ET-42/2016) funded by the Department of Science and Technology (DST), Government of India.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Variar, L., Muralidharan, M.N., Narayanankutty, S.K. et al. High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05311-z
Received:
Accepted:
Published: