Studies of structural, ferroelectric, magnetic and electrical characteristics of Bi(Fe1−xNdx)O3 (x = 0.05, 0.10, 0.15) multiferroics

Abstract

In this communication, the effect of the Fe-site modification by neodymium (Nd) on the structural, dielectric, ferroelectric, magnetic and electrical (impedance, conductivity) characteristics of mixed oxide synthesized bismuth ferrite (BiFeO3) ceramics (i.e. Bi(Fe1−xNdx)O3; x = 0, 0.05, 0.1 and 0.15) has been studied in different experimental conditions. The structural analysis, carried out by using of X-ray diffraction data followed by the Rietveld refinement method, has shown structural modification from rhombohedral to orthorhombic symmetry. The impedance analysis shows that the synthesized compounds hold a non-Debye type of relaxation process. The doping of donor ions can overwhelm the existence of oxygen vacancies which increase the resistivity of the materials. The semiconductor characteristic of the synthesized compounds is observed at high temperature. The AC-conductivity (frequency-dependent) results of the materials follow the Jonscher's power law. Study of room-temperature ferroelectric hysteresis loop shows small remanent polarization (Pr) of 0.03 µC/cm2 measured at 5 kV/cm for x = 0.05 composition. The magnetic characteristics show that the Nd-doped BiFeO3 (for x = 0.05) is a weak ferromagnetic material. Numerous outcomes express the important doping significance in boosting of the multiferroic properties, which might be an open choice of BiFeO3 for some electronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    J.F. Scott, Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72–e72 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    K. Ramam, B.S. Diwakar, K. Varaprasad, V. Swaminadham, V. Reddy, Magnetic properties of nano-multiferroic materials. J. Magn. Magn. Mater. 442, 453–459 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3-BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    L.W. Martin, Engineering functionality in the multiferroic BiFeO3-controlling chemistry to enable advanced applications. Dalt. Trans. 39, 10813–10826 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    M. Yadav, A. Agarwal, S. Sanghi, R.K. Kotnala, J. Shah, T. Bhasin, M. Tuteja, J. Singh, Crystal structure refinement, dielectric and magnetic properties of A-site and B-site co-substituted Bi090 Nd0.10Fe1-xTixO3 (x=0.00, 0.02, 0.05 & 0.07) ceramics. J. Alloys Compd. 750, 848 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    T.A. Anjum, M. Naveed-Ul-Haq, S. Hussain, M. Rafique, Analyses of structure, electronic and multiferroic properties of Bi1-xNdxFeO3 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25) system. J. Alloys Compd. 820, 1–10 (2020)

    Article  Google Scholar 

  8. 8.

    A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloys Compd. 598, 142–150 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60, 2449–2470 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    A.J.C. Buurma, G.R. Blake, T.T.M. Palstra, U. Adem, Multiferroic Materials: Physics and Properties, in: Ref. Modul. Mater. Sci. Mater. Eng., Elsevier Ltd., pp. 1–17 (2016)

  12. 12.

    C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    G.L. Yuan, K.Z. Baba-Kishi, J.-M. Liu, S. Wing Or, Y.P. Wang, Z.G. Liu, Multiferroic properties of single-phase Bi0.85La0.15FeO3 lead-free ceramics. J. Am. Ceram. Soc. 89, 3136–3139 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, X.Q. Pan, Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics. Appl. Phys. Lett. 88, 162901 (2006)

    Article  Google Scholar 

  15. 15.

    A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 14321 (2012)

    Article  Google Scholar 

  16. 16.

    D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 86, 1–3 (2005)

    Google Scholar 

  17. 17.

    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 60401 (2005)

    Article  Google Scholar 

  18. 18.

    A. Gruverman, A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends. Reports Prog. Phys. 69, 2443–2474 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    C.H. Ahn, K.M. Rabe, J.-M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    N. Okasha, S.I. El-Dek, M. Ayman, A.I. Ali, Comparative study on the influence of rare earth ions doping in Bi0.6Sr0.4FeO3 nanomultiferroics. J. Alloys Compd. 689(1051), 1051–1058 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192, 55–69 (1993)

    Article  Google Scholar 

  22. 22.

    V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Mater. 57, 5137–5145 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    A. Kumar, D. Varshney, Crystal structure refinement of Bi1-xNdxFeO3multiferroic by the Rietveld method. Ceram. Int. 38, 3935–3942 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3. Ceram. Int. 44, 21330–21337 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Y.P. Wang, G.L. Yuan, X.Y. Chen, J.M. Liu, Z.G. Liu, Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic. J. Phys. D. Appl. Phys. 39, 2019–2023 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Effects of milling time on structural, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite. Appl. Phys. A Mater. Sci. Process. 126, 181 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    A. Peliz-Barranco, F. Caldern-Piar, O. Garca-Zaldvar, Y. Gonzlez-Abreu, Relaxor Behaviour in Ferroelectric Ceramics, in: A.P. Barranco (Ed.), Adv. Ferroelectr., IntechOpen, Rijeka, 2012.

  29. 29.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3. Mater. Res. Express. 3, 1–20 (2016)

    Google Scholar 

  31. 31.

    A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. El Marssi, Luk’yanchuk, Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B. 85, 215 (2012)

    Article  Google Scholar 

  32. 32.

    J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987).

    Google Scholar 

  33. 33.

    J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12(A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 1–6 (2005)

    Google Scholar 

  34. 34.

    K. Sanjoom, K. Pengpat, G. Rujijanagul, C. Mai, C. Mai, Dielectric properties of modified BiFeO3. Ceramics 50, 201–204 (2013)

    Google Scholar 

  35. 35.

    P. Sharma, S. Hajra, S. Sahoo, P.K. Rout, R.N.P. Choudhary, Capacitive and resistive characteristics of gallium modified lead zirconate titanate. J. Mater. Sci. Mater. Electron. 28, 12048–12055 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloys Compd. 579, 218–226 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    A.K. Jonscher, Universal Relaxation Law, London, 1996.

Download references

Acknowledgements

Author Dr. Alok Shukla thankfully acknowledges the financial support received from SERB-DST, Government of India, New Delhi, in the form of Research Project No. EMR/2015/002420.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alok Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shukla, A., Kumar, N. et al. Studies of structural, ferroelectric, magnetic and electrical characteristics of Bi(Fe1−xNdx)O3 (x = 0.05, 0.10, 0.15) multiferroics. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05308-8

Download citation