Spectroscopic ellipsometry to precisely estimate the thickness for optimizing the performance of three-layer broadband transparent electrodes


This work utilized the optical properties of indium tin oxide/silver/indium tin oxide electrodes to set up the fitting range for spectroscopic ellipsometry (SE) analysis. Then, the SE fitting on the thickness and optical constants of each layer in several separate stages was investigated. In this way, the results suggest that the SE fitting can be able to converge rapidly and obtain the precise thickness of each layer. Experiment analysis shows that when the silver layer thickness was 8.5–11.5 nm, the sheet resistance of the uniform electrodes was < 8.5 Ω/sq, while the average transmittances were > 82.0% in the visible light region; the related Haacke indexes were > 22.0 × 10−3 Ω−1. For photovoltaic application, when the silver layer thickness was 7.5–8.5 nm, the sheet resistance of the three-layer electrodes was < 9.0 Ω/sq, while their average transmittance was > 77.5%; the related Haacke indexes were > 9.0 × 10−3 Ω−1. Comparing the SE results with experimental measurements, it is concluded that the uniformity of the silver layer and the stability of the sputtering system were the major factors affecting the optoelectronic performance of the three-layer electrodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors—a status review. Thin Solid Films 102(1), 1–46 (1983)

    CAS  Article  Google Scholar 

  2. 2.

    L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011)

    Article  Google Scholar 

  3. 3.

    J.-Y. Lee, S.T. Connor, Yi. Cui, P. Peumans, S.-P. Electrodes, Nano Lett. 8(2), 689–692 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    J. van de Groep, P. Spinelli, A. Polman, Transparent conducting silver nanowire networks. Nano Lett. 12(6), 3138–3144 (2012)

    Article  Google Scholar 

  5. 5.

    J. van de Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl. Phys. Lett. 88, 233503 (2006)

    Article  Google Scholar 

  6. 6.

    J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008)

    Article  Google Scholar 

  7. 7.

    J. Zou, H.-L. Yip, S.K. Hau, A.K.-Y. Jen, Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl. Phys. Lett. 96, 203301 (2010)

    Article  Google Scholar 

  8. 8.

    H. Ferhati, F. Djeffal, A. Benhaya, Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering. Superlattices Microstruct. 129, 176–184 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    T.-y Wang, B.-J. Li, N.-F. Ren, L.-J. Huang, H. Li, Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering. Mater. Sci. Semicond. Process. 91, 73–80 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    K.-M. Lin, R.-L. Lin, W.-T. Hsiao, Y.-C. Kang, C.-Y. Chou, Y.-Z. Wang, Effects of the structural properties of metal oxide/Ag/metal oxide multilayer transparent electrodes on their optoelectronic performances. J. Mater. Sci. Mater. Electron. 28(16), 12363–12371 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    K. Vedam, Spectroscopic ellipsometry: a historical overview. Thin Solid Films 313–314, 1–9 (1998)

    Article  Google Scholar 

  12. 12.

    D.E. Aspnes, Expanding horizons: new developments in ellipsometry and polarimetry. Thin Solid Films 455–456, 3–13 (2004)

    Article  Google Scholar 

  13. 13.

    D.E. Aspnes, Spectroscopic ellipsometry—past, present, and future. Thin Solid Films 571, 334–344 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    M. Losurdo et al., Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J. Nanopart. Res. 11, 1521–1554 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    E. Garcia-Caurel, A. De Martino, J.-P. Gaston, Li. Yan, Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization. Appl. Spectrosc. 67, 1–21 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    Y.S. Jung, Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions. Thin Solid Films 467, 36–42 (2004)

    CAS  Article  Google Scholar 

  17. 17.

    R.A. Synowicki, Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313–314, 394–397 (1998)

    Article  Google Scholar 

  18. 18.

    J.N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S.M. Smith, J.H. Baker, H.G. Tompkins, Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979–7989 (2008)

    CAS  Article  Google Scholar 

  19. 19.

    J.A. Woollam, Co., Inc. CompleteEASE™ Data Analysis Manual (2011)

Download references


The authors gratefully acknowledge the financial support provided by the Ministry of Science and Technology of the Republic of China under Contact Number MOST 109-2221-E-218-001.

Author information



Corresponding author

Correspondence to Keh-Moh Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, KM., Shinde, S. Spectroscopic ellipsometry to precisely estimate the thickness for optimizing the performance of three-layer broadband transparent electrodes. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05290-1

Download citation