Electrochemical migration behavior of low-temperature-sintered Ag nanoparticle paste using water-drop method

Abstract

The electrochemical migration (ECM) behavior of low-temperature-sintered Ag nanoparticle paste electrode was investigated using water-drop method. The effects of applied direct current bias voltage and NaCl concentration on ECM behavior were discussed. Results show that: at low NaCl concentration levels, mean time to failure caused by ECM decreased with increasing NaCl concentration due to the increase of solution conductivity; at medium NaCl concentration levels, dendrite growth was retarded due to the formation of AgOH or other insoluble products, while at high NaCl concentration levels, due to the turbulent hydrogen evolution, the second spreading of water drop resulted in the circuit broken and thus inhibited ECM behavior. Moreover, mean time to failure decreased with the rising applied bias voltage. More importantly, hexadecyltrimethylammonium chloride (CTAC) was proved to act as an effective inhibitor to migrate dendrite growth by selected adsorption. And the ECM inhibition efficiency increased with the concentration of CTAC. Relevant mechanisms of ECM behavior and ECM inhibition effect of CTAC for low-temperature-sintered Ag nanoparticle paste were proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Lim, S. Kim, J. Lim, S. Park, Low Temperature-cured Electrically Conductive Pastes for Interconnection on Electronic Devices. J. Mater. Chem. 22, 20529–20534 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    L. Nayak, S. Mohanty, S. Nayak, A. Ramadoss, A Review on Inkjet Printing of Nanoparticle Ink for Flexible Electronics. J. Mater. Chem. 7, 8771–8795 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    W. Henry, E. George, Electrically Conducting Cements Containing Epoxy Resins and Silver. U.S. Patent. No. 2774747. (1956).

  4. 4.

    J. Kang, J. Tok, Z. Bao, Self-healing Soft Electronics. Nat. Electron. 2, 144–150 (2019)

    Google Scholar 

  5. 5.

    A. Desireddy, B. Conn, J. Guo, B. Yoon, R. Barnett, B. Monahan, K. Kirschbaum, W. Griffith, R. Whetten, U. Landman, T. Bigioni, Ultrastable Silver Nanoparticles. Nature 501, 399–402 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    R. Naik, S. Stringer, G. Agarwal, S. Jones, M. Stone, Biomimetic Synthesis and Patterning of Silver Nanoparticles. Nat. Mater. 1, 169–172 (2002)

    CAS  Article  Google Scholar 

  7. 7.

    K. Kim, Y. Kwon, Y. Cho, S. Jung, Electrochemical Migration of Ag Nanoink Patterns Controlled by Atmospheric-pressure Plasma. Microelectronic. Eng. 106, 27–32 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    X. Zhong, W. Lu, B. Liao, B. Medgyes, J. Hu, Y. Zheng, D. Zeng, Z. Zhang, Evidence for Ag Participating the Electrochemical Migration of 96.5Sn-3Ag-0.5Cu Alloy. Corros. Sci. 156, 10–15 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    G. Kohman, H. Hermance, G. Downes, Silver Migration in Electrical Insulation. The Bell System Technical Journal. 34, 1115–1147 (1955)

    CAS  Article  Google Scholar 

  10. 10.

    B. Liao, H. Wang, W. Xiao, Y. Cai, X. Guo, Recent Advances in Method of Suppressing Dendrite Formation of Tin-based Solder Alloys. J. Mater. Sci-Mater. El. 31, 13001–13010 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    B. Liao, H. Wang, S. Wan, W. Xiao, X. Guo, Electrochemical Migration Inhibition of Tin by Disodium Hydrogen Phosphate in Water Drop Test. Metals. 10, 942 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    X. Zhong, In Situ Study of the Electrochemical Migration of Tin in the Presence of H2S. J. Mater. Sci-Mater. El. 31, 8996–9005 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    P. Yi, C. Dong, Y. Ji, Y. Yin, J. Yao, K. Xiao, Electrochemical Migration Failure Mechanism and Dendrite Composition Characteristics of Sn96.5Ag3.0Cu0.5 Alloy in Thin Electrolyte Films. J. Mater. Sci-Mater. El. 30, 6575–6582 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Zhou, L. Yang, Y. Li, W. Lu, (2019) Exploring the Data-Driven Modeling Methods for Electrochemical Migration Failure of Printed Circuit Board. 2019 Prognostics and System Health Management Conference (PHM-Paris). IEEE, 100–105

  15. 15.

    X. Zhong, L. Chen, B. Medgyes, Z. Zhang, S. Gao, L. Jakab, Electrochemical migration of Sn and Sn Solder Alloys: A Review. RSC. Adv. 7, 28186–28206 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Zhou, Y. Li, Y. Chen, M. Zhu, Life Model of the Electrochemical Migration Failure of Printed Circuit Boards Under NaCl Solution. IEEE T. Device Mater. Re. 19, 622–629 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    X. Qi, H. Ma, C. Wang, S. Shang, X. Li, Y. Wang, H. Ma, Electrochemical Migration Behavior of Sn-based Lead-free Solder. J. Mater. Sci-Mater. El. 30, 14695–14702 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    X. Li, X. Tian, S. Liu, C. Wu, Y. Han, L. Meng, L. Song, Y. Zhang, Self-assembled Vertically Aligned Silver Nanorod Arrays Prepared by Evaporation-induced Method as High-performance SERS Substrates. J. Mater. Sci. 55, 14019–14030 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    C. Pignolet, M. Euvrard, A. Foissy, C. Filiatre, Electrodeposition of Latex Particles in Presence of Surfactant: Investigation of Deposit Morphology. J. Colloid. Interf. Sci. 349, 41–48 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    J. Lin, Q. Liu, J. Zhang, Y. Wu, H. Li, Y. Ma, C. Qu, G. Chen, W. Song, Corrosion Inhibition and Structure-efficiency Relationship Study of CTAC and CDHAC. Desalin. Water. Treat. 139, 1–6 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    X. Zhong, S. Yu, L. Chen, J. Hu, Z. Zhang, Test Methods for Electrochemical Migration: A Review. J. Mater. Sci-Mater. El. 28, 2279–2289 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    W. Lin, C. Tsou, F. Ouyang, Electrochemical Migration of Nano-sized Ag Interconnects under Deionized Water and Cl-containing Electrolyte. J. Mater. Sci-Mater. El. 29, 18331–18342 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    R. Manepalli, F. Stepniak, S. Bidstrup-Allen, P. Kohl, Silver Metallization for Advanced Interconnects. IEEE T. Adv. Packaging. 22, 4–8 (1999)

    CAS  Article  Google Scholar 

  24. 24.

    G. Lu, C. Yan, Y. Mei, X. Li, Dependence of Electrochemical Migration of Sintered Nanosilver on Chloride. Mate. Chem. Phys. 151, 18–21 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    A. Zelyanskii, L. Zhukova, G. Kitaev, Solubility of AgCl and AgBr in HCl and HBr. Inorg. Mater. 37, 523–526 (2001)

    CAS  Article  Google Scholar 

  26. 26.

    J. Lin, J. Chan, On the Resistance of Silver Migration in Ag-Pd Conductive Thick Films under Humid Environment and Applied d.c. Field. Mate. Chem. Phys. 43, 256–265 (1996)

    CAS  Article  Google Scholar 

  27. 27.

    J. Wei, Y. Lei, H. Jia, J. Cheng, H. Hou, Z. Zheng, Controlled in Situ Fabrication of Ag2O/AgO Thin Films by a Dry Chemical Route at Room Temperature for Hybrid Solar Cells. Dalton. T. 43, 11333–11338 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    A. Sobhani-Nasab, M. Behpour, Synthesis and Characterization of AgO Nanostructures by Precipitation Method and its Photocatalyst Application. J. Mater. Sci-Mater. El. 27, 1191–1196 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    G. Harsányi, G. Inzelt, Comparing Migratory Resistive Short Formation Abilities of Conductor Systems Applied in Advanced Interconnection Systems. Microelectron. Reliab. 41, 229–237 (2001)

    Article  Google Scholar 

  30. 30.

    D. Yu, W. Jillek, E. Schmitt, Electrochemical Migration of Sn-Pb and Lead Free Solder Alloys under Distilled Water. J. Mater. Sci-Mater. El. 17, 219–227 (2006)

    CAS  Article  Google Scholar 

  31. 31.

    X. Zhong, G. Zhang, X. Guo, The Effect of Electrolyte Layer Thickness on Electrochemical Migration of Tin. Corros. Sci. 96, 1–5 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    M. Kaisheva, Electrosorption of Amphiphilic Surfactants at the Mercury-solution Interface and Its Influence on the Stability of Thin Liquid Films. Adv. Colloid. Interf. 38, 319–352 (1992)

    CAS  Article  Google Scholar 

  33. 33.

    J. Mata, D. Varade, P. Bahadur, Aggregation Behavior of Quaternary Salt Based Cationic Surfactants. Thermoch. Acta. 428, 147–155 (2005)

    CAS  Article  Google Scholar 

  34. 34.

    B. Liao, Z. Chen, Q. Qiu, X. Guo, Inhibitory Effect of Cetyltrimethylammonium Bromide on the Electrochemical Migration of Tin in Thin Electrolyte Layers Containing Chloride Ions. Corros. Sci. 118, 190–201 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work supported by the National Natural Science Foundation of China (Grant No. 51971067, 52001080), Platform Research Capability Enhancement Project of Guangzhou University (Grant No. 69-620939), Guangzhou University’s 2020 Training Program for Talent (Grant No. 69-62091109), and Science and Technology Research Project of Guangzhou (No. 202002010007).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bokai Liao or Xingpeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, B., Wang, H., Kang, L. et al. Electrochemical migration behavior of low-temperature-sintered Ag nanoparticle paste using water-drop method. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05289-8

Download citation