Structure, optical, and electrical characterization of nanostructured gallium sulfide Ga2S3 thin films for electronic and solar cell applications

Abstract

Ga2S3 thin films with different thicknesses (32, 60, 100, and 140 nm) were prepared using inert gas condensation technique using Argon gas. The structures of the used powder and films were studied using X-ray diffraction. Observation of the surface topography was carried out using transmission electron microscope, which showed that the grain size increases with film thickness for these studied samples, and diffraction patterns which illustrated that the deposited films have nanocrystalline structure. The optical transmittance, reflectance, and absorbance of these films were measured. It was found that these sample had a direct optical energy gap. This optical energy gap was calculated for these films. This energy gap increased with film thicknesses; on the other hand the Urbach tail values of these samples decreased with film thickness. The electrical resistivity for these films was determined and was found that these values decreased with film thickness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H. Kim, C. Jin, S. Park, C. Lee, Influence of SiO2 capping and annealing on the luminescence properties of larva-like GaS nanostructures. Bull. Korea Chem. Soc. 33, 3576–3580 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    G. Shen, D. Chen, P.C. Chen, C. Zhou, Vapor−solid growth of one- dimensional layer-structured gallium sulfide nanostructures. ACS Nano 3, 1115–2112 (2009)

    CAS  Article  Google Scholar 

  3. 3.

    T. Ahamad, S.M. Alshehri, Green synthesis and characterization of Gallium(III) Sulphide (α-Ga2S3) nanoparicles at room temperature. Nano Hybr. 6, 37–46 (2014)

    Article  CAS  Google Scholar 

  4. 4.

    X. Wang, J. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang, Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B 110, 7720–7724 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    A. Pashayev, B. Tunaboylu, K. Allahverdiyev, E. Salaev, B. Tagiyev, Linear and NLO spectroscopy of GaSe and InSe nanoparticles formed via laser ablation. XII International Conference on Atomic and Molecular Pulsed Lasers, ed. Victor F. Tarasenko, Andrey M. Kabanov (2015)

  6. 6.

    C.J. Zhang, X. Liu, V. Nicolosi, Synthesis and physicochemical properties of two-dimensional gallium sulfide crystals. Bioenergetics 5, 1–3 (2016)

    Google Scholar 

  7. 7.

    G.A. Gibson, A. Chaiken, K. Nauka, C.C. Yang, R. Davidson, A. Holden, R. Bicknell, B.S. Yeh, J. Chen, H. Liao, S. Subramanian, D. Schut, J. Jasinski, Z. Liliental-Weber, Phase-change recording medium that enables ultrahigh-density electron-beam data storage. Appl. Phys. Lett. 86(5), 051902–051906 (2005)

    Article  CAS  Google Scholar 

  8. 8.

    A.V. Osadchy, S.G. Volotovskiy, E.D. Obraztsova, V.V. Savin, D.L. Golovashkin, Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method. J. Phys. 737, 012034–012038 (2016)

    Google Scholar 

  9. 9.

    A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, S. Winters, N.C. Berner, D. McCloskey, J.F. Donegan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts. Chem. Mater. 27, 3483–3493 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C.J. Zhang, H.C. Nerl, K. Rode, N.C. Berner, C. Downing, N. McEvoy, E. Muñoz, A. Harvey, Z. Gholamvand, G.S. Duesberg, J.N. Coleman, V. Nicolosi, Long-chain amine- templated synthesis of gallium sulfide and gallium selenide nanotubes. Nanoscale 8, 11698–11706 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti, A.S.R. Chesman, S.P. Russo, M.D. Dickey, D.W.M. Lau, R.B. Kaner, Z.Q. Xu, T. Daeneke, Q. Bao, O. Kavehei, K.K. Zadeh, B.C. Gibson, Wafer-scale two- dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8, 14482–14490 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    D.J. Late, B. Liu, J. Luo, A. Yan, H.S. Matte, M. Grayson, C.N. Rao, V.P. Dravid, GaS and GaSe ultrathin layer transistors. Adv. Mater. 24, 3549–3554 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    P.A. Hu, Z.Z. Wen, L. Wang, P. Tan, K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988–5994 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    V. Nagarajan, V. Ganesan, R. Chand, Quantum chemical studies on structural stability and electronic properties of GaS nanostructures. Int. J. Chem. Tech. Res. 7(4), 1835–1842 (2014)

    CAS  Google Scholar 

  15. 15.

    P.A. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, K. Xiao, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano. Lett. 13, 1649–1654 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Lia, J. Li, High performance few- layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 6, 2582–2587 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H.H. Wang, W. Weng, L. Trahey, C.P. Canlas, J.W. Elam, Gallium sulfide–single-walled carbon nanotube composites: high-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 24, 5435–5442 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    C.H. Ho, S.L. Lin, Optical properties of the interband transitions of layered gallium sulfide. J. Appl. Phys. 100, 083508 (2006)

    Article  CAS  Google Scholar 

  19. 19.

    M. Schluter, The electronic structure of GaSe. Nuovo Cimen. B 13, 313–360 (1973)

    Article  Google Scholar 

  20. 20.

    M. Balkanski, R.F. Wallis, Semiconductor Physics and Applications (Oxford University Press, New York, 2000).

    Google Scholar 

  21. 21.

    J.F. Sanchez-Royo, D. Errandonea, A. Sequra, L. Roa, A. Chevy, Tin-related double acceptors in gallium selenide single crystals. J. Appl. Phys. 83, 4750–4755 (1998)

    CAS  Article  Google Scholar 

  22. 22.

    S. Suh, D.M. Hoffman, Chemical vapor deposition of gallium sulfide thin films. Chem. Mater. 12, 2794–2797 (2000)

    CAS  Article  Google Scholar 

  23. 23.

    M. Isik, E. Tugay, N. Gasanly, Optical properties of GaS crystals: combined study of temperature dependent band gap energy and oscillator parameters. Indian J. Pure Appl. Phys. 55, 583–588 (2017)

    Google Scholar 

  24. 24.

    C. Sanz, C. Guillén, M.T. Gutiérrez, Influence of the synthesis conditions on gallium sulfide thin films prepared by modulated flux deposition. J. Phys. D 42, 85108–85109 (2009)

    Article  CAS  Google Scholar 

  25. 25.

    H. Rahman, J. Majeed, A. Habeeb, Optical properties of two-dimensional GaS and GaSe monolayers. Physica E 101, 251–255 (2018)

    Article  CAS  Google Scholar 

  26. 26.

    I. Caraman, E. Vatavu, L. Leontie, M. Stamate, D. Untila, Crystalline structure and optical properties of GaS-CdS nanocomposite. Phys. Status Sol. C 12, 70–75 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    G. Micocci, R. Rella, A. Tepore, Conductivity and optical absorption in amorphous gallium sulphide thin films. Thin Solid Films 172, 179–183 (1989)

    CAS  Article  Google Scholar 

  28. 28.

    J. Kuhs, H. Zeger, C. Detavernier, Plasma enhanced atomic layer deposition of gallium sulfide thin films. J. Vac. Sci. Technol. A 37, 020915–020920 (2019)

    Article  CAS  Google Scholar 

  29. 29.

    P. Srivastava, Y. Sharma, Optoelectronic properties of Ga2S3 and Ga2O3: density functional theory method. AIP Conf. Proc. 1391, 495–497 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    P. Rao, S. Kumar, N.K. Sahoo, Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation. Mater. Chem. Phy. 149–150, 164–171 (2015)

    Article  CAS  Google Scholar 

  31. 31.

    B.P. Bahuguna, L.K. Saini, R.O. Sharma, The dielectric response and electronic properties of GaS monolayer: a first-principles study. AIP Conf. Proc. 2006, 030016–030017 (2018)

    Article  CAS  Google Scholar 

  32. 32.

    Y. Ma, Y. Dai, M. Guo, L. Yu, B. Huang, Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys. Chem. Chem. Phys. 15, 7098–7105 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    A. Segura, A. Chevy, Large increase of the low-frequency dielectric constant of gallium sulfide under hydrostatic pressure. Phys. Rev. B 15, 4601–4604 (1994)

    Article  Google Scholar 

  34. 34.

    G. Micocci, R. Rella, P. Siciliano, A. Tepor, Investigation of electronic properties of gallium sulfide single crystals grown by iodine chemical transport. J. Appl. Phys. 68(1), 138–142 (1990)

    CAS  Article  Google Scholar 

  35. 35.

    H. Chen, Y. Li, L. Huang, J. Li, Influential electronic and magnetic properties of gallium sulfide monolayer by substitutional doping. J. Phys. Chem. C 119, 29148–29156 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    N. Seeburrun, H.H. Abdallah, E.F. Archibong, P. Ramasami, Unveiling the structural and electronic properties of the neutral and anionic gallium sulfide clusters. Struct. Chem. 25, 755–766 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    E. Machado-Charry, E. Canadell, A. Segura, First-principles study of the electronic structure of cubic GaS: metallic versus insulating polymorphs. Phys. Rev. B 75, 045206–045207 (2007)

    Article  CAS  Google Scholar 

  38. 38.

    T. Ahamad, S.M. Alshehri, Green synthesis and characterization of gallium(III) sulphide (α-Ga2S3) nanoparicles at room temperature. Nano Hybrids. 6, 37–46 (2014)

    Article  CAS  Google Scholar 

  39. 39.

    A. Aydinli, N.M. Gasanly, K. Goksen, Donor–acceptor pair recombination in gallium sulfide. J. Appl. Phys. 88, 7144–7149 (2000)

    CAS  Article  Google Scholar 

  40. 40.

    Y. Zhang, C. Chen, C.Y. Liang, Z.W. Liu, Y.S. Li, R. Che, Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres. Nanoscale. 7(41), 17381–17386 (2015)

    CAS  Article  Google Scholar 

  41. 41.

    H. Ertap, T. Baydar, M. Yuksek, M. Karabulut, Structural and optical properties of gallium sulfide thin film. Turk. J. Phys. 40, 297–303 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    M.P. Pardo, M. Guittard, A. Chilouet, A. Tomas, Diagramme de phases gallium- soufre et études structurales des phases solides. J. Solid State Chem. 102, 423–433 (1993)

    CAS  Article  Google Scholar 

  43. 43.

    D. Gherouel, I. Gaied, K. Boubaker, N. Yacoubi, M. Amlouk, Some physical investigations of AgInS2−xSex thin film compounds obtained from AgInS2 annealed in seleneide atmosphere. J. Alloy. Compd. 545, 190–199 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    A.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors. Sens. Actuators B 2, 654–659 (2008)

    Article  CAS  Google Scholar 

  45. 45.

    F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    CAS  Article  Google Scholar 

  46. 46.

    Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers. Mater. Sci. Eng. B 174, 145–149 (2010)

    CAS  Article  Google Scholar 

  47. 47.

    M. Fadel, S.A. Fayek, M.O. Abou-Helal, M.M. Ibrahim, A.M. Shakra, Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloy Compds. 485, 604–609 (2009)

    CAS  Article  Google Scholar 

  48. 48.

    J. Aranda, J.L. Morenza, J. Esteve, J.M. Codina, Optical properties of vacuum- evaporated CdTe thin films. Thin Sold Films 120, 23–30 (1984)

    CAS  Article  Google Scholar 

  49. 49.

    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Author would like to thank National Research Center, Gizza, Egypt, for its important supporting to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Abdel Moez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moez, A.A. Structure, optical, and electrical characterization of nanostructured gallium sulfide Ga2S3 thin films for electronic and solar cell applications. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05288-9

Download citation