Enhanced capacitive performance of polyaniline on hydroquinone-functionalized three-dimensional porous graphene substrate for supercapacitors


Three-dimensional porous graphene/polyaniline (3D-G/PANI) electrode materials were fabricated with hydroquinone-functionalized three-dimensional porous graphene (3D-G) as the substrate. To obtain 3D-G/PANI, the functionalized 3D-G substrate was synthesized through a hydrothermal method first, and then, polyanilines (PANIs) were grown onto the skeleton of functionalized 3D-G substrate by the in situ polymerization of aniline (An). The effect of An amount was optimized to improve the electrochemical performance of 3D-G/PANI. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and infrared spectroscopy reveal that functionalized 3D-G was successfully prepared and PANIs were uniformly grown on the skeleton of functionalized 3D-G in the form of nanoparticles. The 3D-G/PANI prepared with 80 μL of An exhibits a highest specific capacitance of 542 F/g at 1.5 mA/cm2 (1.14 A/g), 2.05 and 1.54 times those of functionalized 3D-G and PANI, respectively. And the 3D-G/PANI retains a specific capacitance of 435 F/g even at 30 mA/cm2 (22.73 A/g). Moreover, the capacity retention is 82% of initial specific capacitance after 3000 charge/discharge cycles, which is much higher than that of PANI (62%) after 1000 cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes-a review. J. Materiomics 2(1), 37–54 (2016)

    Article  Google Scholar 

  2. 2.

    G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28(19), 3646–3652 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommelt, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2016)

    Article  CAS  Google Scholar 

  4. 4.

    L. Dai, Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46(1), 31–42 (2012)

    Article  CAS  Google Scholar 

  5. 5.

    B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction. Appl. Surf. Sci. 258(8), 3438–3443 (2012)

    CAS  Article  Google Scholar 

  6. 6.

    C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    Z. Tian, J. Li, G. Zhu, J. Lu, Y. Wang, Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Phys. Chem. Chem. Phys. 18(2), 1125–1130 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    H. Qiu, X. Han, F. Qiu, J. Yang, Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors. Appl. Surf. Sci. 376, 261–268 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    P. Sekar, B. Anothumakkool, S. Kurungot, 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS Appl. Mater. Interfaces 7(14), 1–16 (2015)

    Article  CAS  Google Scholar 

  10. 10.

    T. Fan, S. Tong, W. Zeng, Q. Niu, L. Liu, Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth. Met. 199, 79–86 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2(5), 781–794 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    L. Mao, C. Guan, X. Huang, Q. Ke, Y. Zhang, 3D Graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim. Acta 196, 653–660 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    X. Zhao, H. Dong, Y. Xiao, H. Hu, Y. Cai, Three-dimensional nitrogen-doped graphene as binder-free electrode materials for supercapacitors with high volumetric capacitance and the synergistic effect between nitrogen configuration and supercapacitive performance. Electrochim. Acta 218, 32–40 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-Dimensional porous Nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim. Acta 213, 291–297 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 299, 347–355 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Chen, X. Zhang, E. Liu, C. He, Y. Han, Fabrication of three-dimensional graphene/Cu composite by in situ CVD and its strengthening mechanism. J. Alloys Compd. 688, 69–76 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    X. Wu, Z. Xie, M. Sun, T. Lei, Z. Zuo, Edge-rich and (N, S)-doped 3D porous graphene as efficient metal-free electrocatalyst for ORR. RSC Adv. 6(93), 90384–90387 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    R. Ramachandran, M. Saranya, V. Velmurugan, B.P.C. Raghupathy, S.K. Jeong, Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications. Appl. Energy 153(860), 22–31 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    J. Zhang, H. Yang, G. Shen, P. Chen, J. Zhang, Reduction of graphene oxide-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    C. Liu, G. Han, Y. Chang, Y. Xiao, H. Zhou, High-performance supercapacitors based on the reduced graphene oxide hydrogels modified by trace amounts of benzenediols. Chem. Eng. J. 328, 25–34 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    J. He, A. Zhang, Y. Zhang, Y. Guan, Novel redox hydrogel by in situ gelation of chitosan as a result of template oxidative polymerization of hydroquinone. Macromolecules 44(7), 2245–2252 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    M. Wang, X. Duan, Y. Xu, X. Duan, Functional three-dimensional graphene/polymer composites. ACS Nano 10(8), 7231–7247 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    S. Dong, A.Q. Dao, B. Zheng, Z. Tan, C. Fu, One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim. Acta 152, 195–201 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114(17), 8062–8067 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    J. Yan, W. Tong, Z. Fan, W. Qian, M. Zhang, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 195(9), 3041–3045 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 392, 71–79 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    X. Wu, M. Lian, Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J. Power Sources 362, 184–191 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 83, 79–89 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    CAS  Article  Google Scholar 

  31. 31.

    M. Cochet, G. Louarn, S. Quillard, J.P. Buisson, S. Lefrant, Theoretical and experimental vibrational study of emeraldine in salt form. Part II. J. Raman Spectrosc. 31(12), 1041–1049 (2000)

    CAS  Article  Google Scholar 

  32. 32.

    W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, A facile one-pot preparation of dialdehyde starch reduced graphene oxide/polyaniline composite for supercapacitors. Electrochim. Acta 139, 117–126 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    H. An, Y. Li, P. Long, Y. Gao, C. Qiu, Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 312, 146–155 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    H. Xie, Y. Zhu, Y. Wu, Z. Wu, E. Liu, The effect of hydroquinone as an electrolyte additive on electrochemical performance of the polyaniline supercapacitor. Mater. Res. Bull. 50(2), 303–306 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    A.J. Zhang, J. He, Y. Guan, Y.J. Zhang, J.X. Zhu, Oxidative polymerization of hydroquinone using deoxycholic acid supramolecular template. Sci. China Chem. 55(5), 830–835 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    F. Yang, M. Xu, S.J. Bao, H. Wei, H. Chai, Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim. Acta 137, 381–387 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications. Chem. Eng. J. 255, 89–96 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources 342, 1–8 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Y. Jin, M. Fang, M. Jia, In situ one-pot synthesis of graphene-polyaniline nanofiber composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 308, 333–340 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    J. Chen, J. Song, X. Feng, Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym. Bull. 74, 27–37 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    Y. Yang, Y. Xi, J. Li, G. Wei, N.I. Klyui, Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res. Lett. 12(1), 394–404 (2017)

    Article  CAS  Google Scholar 

  42. 42.

    X. Hong, B. Zhang, E. Murphy, J. Zou, Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J. Power Sources 343, 60–66 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    W. Tang, L. Peng, C. Yuan, J. Wang, S. Mo, Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth. Met. 202, 140–146 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    H. Zhou, Y. Sun, G. Li, S. Chen, Y. Lu, Interfacial assembly and electrochemical properties of nafion-modified-graphene/polyaniline hollow spheres. Polymer 55(17), 4459–4467 (2014)

    CAS  Article  Google Scholar 

  45. 45.

    Z. Fan, Z. Cheng, J. Feng, Z. Xie, Y. Liu, Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors. J. Mater. Chem. A 5(32), 16689–16701 (2017)

    CAS  Article  Google Scholar 

  46. 46.

    Y. Zhang, L. Zu, H. Lian, Z. Hu, An ultrahigh performance supercapacitors based on simultaneous redox in both electrode and electrolyte. J. Alloys Compd. 694, 136–144 (2017)

    CAS  Article  Google Scholar 

  47. 47.

    X. Feng, Z. Yan, N. Chen, Y. Zhang, Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J. Chem. 37(7), 2203–2209 (2013)

    CAS  Article  Google Scholar 

  48. 48.

    H. An, Y. Wang, X. Wang, N. Li, L. Zheng, The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance. J. Solid State Electrochem. 14(4), 651–657 (2010)

    CAS  Article  Google Scholar 

  49. 49.

    S.N. Guo, H.K. Shen, Z.F. Tie, S. Zhu, P.H. Shi, Three-dimensional cross-linked polyaniline fiber/N-doped porous carbon with enhanced electrochemical performance for high-performance supercapacitor. J. Power Sources 359, 285–294 (2017)

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the financial support from the National Natural Science Foundation of China (21664009, 51063003).

Author information



Corresponding authors

Correspondence to Huixia Feng or Nali Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Zhang, F., Chen, N. et al. Enhanced capacitive performance of polyaniline on hydroquinone-functionalized three-dimensional porous graphene substrate for supercapacitors. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05287-w

Download citation