The reverse bias current–voltage–temperature (IVT) characteristics of the (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs) in temperature range of 80–380 K

Abstract

We analyzed current conduction mechanisms (CCMs) of the (Au/Ti)/Al2O3/n-GaAs (MIS) type SBDs in the wide temperature range (80–380 K) by 30 K steps using reverse bias current-voltage (IRVR) characteristics. In general, the values of barrier-height (BH) obtained from the forward bias current–voltage (IFVF) and reverse bias current-voltage (IRVR) characteristics increase with increasing temperature and this change is in-agreement with the reported negative-temperature coefficient bandgap of semiconductor (α = ΔEg/ΔT) or BH for ideal SDs. However, the change in BH at lower temperatures becomes more pronounced. The value of BH obtained from the IRVR data is lower than that obtained from IFVF especially under room temperatures. The necessary barrier height (Φt) for electron emission from the trap state was obtained from the ln (IR) − E0.5, (E = VR/d), plot as 1.25 eV to (at 80 K) 0.91 eV (at 380 K), respectively. This change in the Φt with temperature is in agreement with the reported α value of the Eg for GaAs. The reverse leakage current mechanism in this study was assessd for various temperatures using Schottky emission (SE), Poole–Frenkel emission (PFE), Trap-Assisted Tunneling (TAT), and ohmic conduction mechanisms. The evaluation of the IRVR characteristics shows that the ohmic and TAT are the most dominant conduction mechanisms rather than others.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981).

    Google Scholar 

  2. 2.

    M. Wu, Y.I. Alivov, H. Morkoç, High-κ dielectric and advanced channel concepts for Si MOSFET. J. Mater. Sci.: Mater. Electron. 19, 915–951 (2008). https://doi.org/10.1007/s10854-008-9713-2

    CAS  Article  Google Scholar 

  3. 3.

    E. Marıl, A. Kaya, S. Koçyiğit, Ş Altındal, On the analysis of the leakage current in Au/Ca3Co4Ga0001Ox/n-Si structure in the temperature range of 80–380K. Mater. Sci. Semicond. Process. 31, 256–261 (2015). https://doi.org/10.1016/j.mssp.2014.12.005

    CAS  Article  Google Scholar 

  4. 4.

    A. Türüt, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance-conductance characteristics of (Au/Ti)/Al2O3/n-GaAs structures with very thin Al2O3 interfacial layer. Mater. Res. Express 2, 046301 (2015). https://doi.org/10.1088/2053-1591/2/4/046301

    CAS  Article  Google Scholar 

  5. 5.

    H.C. Lin, P.D. Ye, G.D. Wilk, Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Appl. Phys. Lett. 87, 182904 (2005). https://doi.org/10.1063/1.2120904

    CAS  Article  Google Scholar 

  6. 6.

    I. Vurgaftman, R. Meyer, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 11 (2001). https://doi.org/10.1063/1.1368156

    CAS  Article  Google Scholar 

  7. 7.

    S. Adachi, Physical Properties of III-V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs and InGaAsP (Wiley, New York, 1992).

    Google Scholar 

  8. 8.

    B. Bayraktaroğlu, H. Hartnogel, White- light emission from GaAs MOS structures. Electron. Lett. 14, 470–472 (1978). https://doi.org/10.1049/el_19780316

    Article  Google Scholar 

  9. 9.

    M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413, 186–197 (2002). https://doi.org/10.1016/S0040-6090(02)00438-8

    CAS  Article  Google Scholar 

  10. 10.

    J. Ahn, H. Chou, S.K. Banerjee, Graphene-Al2O3-Silicon heterojunction solar cells on flexible silicon substrates. J. Appl. Phys. 121, 163105 (2017). https://doi.org/10.1063/1.4981880

    CAS  Article  Google Scholar 

  11. 11.

    A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş Altındal, On the conduction mechanisms of Au/(Cu2O-CuO-PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current-voltage-temperature (I-V-T) characteristics. J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018). https://doi.org/10.1007/s10854-017-7900-8

    CAS  Article  Google Scholar 

  12. 12.

    S. Alialy, D.E. Yıldız, Ş Altındal, Study on the reverse bias carrier transport mechanism in Au/TiO2/n-4H-SiC structure. J. Nanoelectron. Optoelectron. 11, 626–630 (2016). https://doi.org/10.1166/jno.2016.1942

    CAS  Article  Google Scholar 

  13. 13.

    V.R. Reddy, V. Manjunath, V. Janardhanam, Y. Kil, C. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-κ BaTiO3 interlayer. J. Electron. Mater. 43, 3499–3507 (2014). https://doi.org/10.1007/s11664-014-3177-3

    CAS  Article  Google Scholar 

  14. 14.

    S. Altındal Yerişkin, The investigation of effects of (Fe2O4-PVP) organic layer, surface states, and series resistance on the electrical characteristics and the sources of them. J. Mater. Sci.: Mater. Electron. 30, 17032–17039 (2019). https://doi.org/10.1007/s10854-019-02045-x

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Laurent, G. Gupta, D.J. Suntrup, S.P. DenBaars, Barrier height inhomogeneity and its impact on (Al, In, Ga) N Schottky diodes. J. Appl. Phys. 119, 064501 (2016). https://doi.org/10.1063/1.4941531

    CAS  Article  Google Scholar 

  16. 16.

    A.B. Yavuz, B.B. Carbas, S. Sönmezoğlu, M. Soylu, Low-temperature electrical characteristics of Si-based device with new Tetrakis NiPc-SNS layer. J. Electron. Mater. 45, 1 (2016). https://doi.org/10.1007/s11664-015-4111-z

    CAS  Article  Google Scholar 

  17. 17.

    A. Venter, D.M. Murape, J.R. Botha, F.D. Auret, Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current-voltage measurements. Thin Solid Films 574, 32–37 (2015). https://doi.org/10.1016/j.tsf.2014.11.057

    CAS  Article  Google Scholar 

  18. 18.

    M. Gülnahar, Electrical characteristics of an Ag/n-InP Schottky diode based on temperature-dependent current-voltage and capacitance-voltage measurements. Metall. Mater. Trans. 46A, 3960–3970 (2015). https://doi.org/10.1007/s11661-015-3044-8

    CAS  Article  Google Scholar 

  19. 19.

    K. Ejderha, N. Yıldırım, A. Türüt, Temperature-dependent current-voltage characteristics in thermally annealed ferromagnetic Co/n-GaN Schottky contacts. Euro. Phys. J. Appl. Phys. 68, 20101 (2014). https://doi.org/10.1051/epjap/2014140200

    CAS  Article  Google Scholar 

  20. 20.

    A. Latreche, Z. Ouennoughi, A. Sellai, R. Weiss, H. Ryssel, Electrical characteristics of Mo/4H-SiC Schottky diodes having ion-implanted guard rings: temperature and implant-dose dependence. Semicond. Sci. Technol. 26, 085003 (2011). https://doi.org/10.1088/0268-1242/26/8/085003

    CAS  Article  Google Scholar 

  21. 21.

    N. Yıldırım, A. Türüt, V. Türüt, The theoretical and experimental study on double-Gaussian distribution in inhomogeneous barrier-height Schottky contacts. Microelectron. Eng. 87, 2225–2229 (2010). https://doi.org/10.1016/j.mee.2010.02.007

    CAS  Article  Google Scholar 

  22. 22.

    V.R. Reddy, Electrical properties of Au/polyvinylidene fluoride (PVDF)/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014). https://doi.org/10.1016/j.tsf2014.01.036

    CAS  Article  Google Scholar 

  23. 23.

    K. Sreenu, C.V. Prasad, V.R. Reddy, Barrier parameters and current transport characteristics of Ti/p-InP Schottky junction modified using orange G (OG) organic interlayer. J. Electron. Mater. 46, 10 (2017). https://doi.org/10.1007/s11664-017-5611-9

    CAS  Article  Google Scholar 

  24. 24.

    E. Arslan, S. Bütün, E. Ozbay, Leakage current by Frenkel-Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures. Appl. Phys. Lett. 94, 142106 (2009). https://doi.org/10.1063/1.3115805

    CAS  Article  Google Scholar 

  25. 25.

    S. Ramesh, S. Dutta, B. Shankar, S. Gopalan, Identification of current transport mechanism in Al2O3 thin films for memory applications. Appl. Nanosci. 5, 115–123 (2015). https://doi.org/10.1007/s13204-014-0298-1

    CAS  Article  Google Scholar 

  26. 26.

    Z. Hu, Q. Feng, Z. Feng, Y. Cai, Y. Shen, G. Yan, X. Lu, C. Zhang, H. Zhou, J. Zhang, Y. Hao, Experimental and theoretical studies of Mo/Au Schottky contact on mechanically exfoliated β-Ga2O3 thin film. Nanoscale Res. Lett. 14, 2 (2019). https://doi.org/10.1186/s11671-018-2837-2

    CAS  Article  Google Scholar 

  27. 27.

    I. Jabbari, M. Baira, H. Maaref, R. Mghaieth, Evidence of Poole-frenkel and Fowler-Nordheim tunneling transport mechanisms in leakage current of (Pd/Au)/Al0.22Ga0.78N/ GaN hetero-structures. Solid State Commun. 314–315, 113920 (2020). https://doi.org/10.1016/j.ssc.2020.113920

    CAS  Article  Google Scholar 

  28. 28.

    E.K. Çınar, N. Yıldırım, C. Coşkun, A. Turut, Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes. J. Appl. Phys. 106, 073717 (2009). https://doi.org/10.1063/1.3236647

    CAS  Article  Google Scholar 

  29. 29.

    H. Altuntaş, Ç. Ozgit-Akgün, I. Dönmez, N. Bıyıklı, Current transport mechanisms in plazma-enhanced atomic layer deposited AIN thin films. J. Appl. Phys. 177, 155101 (2015). https://doi.org/10.1063/1.4917567

    CAS  Article  Google Scholar 

  30. 30.

    Ç.Ş Güçlü, A.F. Özdemir, Ş Altındal, Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016). https://doi.org/10.1007/s00339-016-0558-x

    CAS  Article  Google Scholar 

  31. 31.

    S.K. Tripathi, M. Sharma, Analysis of the forward and reverse bias I-V and C-V characteristics on Al/PVA:n-PbSe polymer nanocomposites Schottky diode. J. Appl. Phys. 111, 074513 (2012). https://doi.org/10.1063/1.3698773

    CAS  Article  Google Scholar 

  32. 32.

    J.J. Zeng, Y.J. Lin, Schottky barrier inhomogeneity for graphene/Si-nanowire arrays/n-type Si Schottky diodes. Appl. Phys. Lett. 104, 133506 (2014). https://doi.org/10.1063/1.4870258

    CAS  Article  Google Scholar 

  33. 33.

    V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, C.J. Choi, Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloys Compd. 504, 146–150 (2010). https://doi.org/10.1016/j.jallcom.2010.05.074

    CAS  Article  Google Scholar 

  34. 34.

    R.F. Schmitsdrof, T.U. Kampen, W. Mönch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vaccum Sci. Technol. B 15, 1221 (1997). https://doi.org/10.1116/1.589442

    Article  Google Scholar 

  35. 35.

    E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press, Oxford, 1978).

    Google Scholar 

  36. 36.

    E. Marıl, A. Kaya, H.G. Çetinkaya, S. Koçyiğit, Ş, Altındal, , On the temperature dependent forward bias current-voltage (I-V) characteristics in Au/2% graphene-cobalt doped (Ca3Co4Ga0.001Ox)/n-Si structure. Mater. Sci. Semicond. Process. 39, 332–338 (2015). https://doi.org/10.1016/j.mssp.2015.05.029

    CAS  Article  Google Scholar 

  37. 37.

    H. Zhang, E.J. Miller, E.T. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular beam epitaxy. J. Appl. Phys. 99, 023703 (2006). https://doi.org/10.1063/1.2159547

    CAS  Article  Google Scholar 

  38. 38.

    J.G. Simmons, Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155, 3 (1967). https://doi.org/10.1103/physrev.155.657

    Article  Google Scholar 

  39. 39.

    C. Chaneliere, J.L. Autran, S. Four, R.A.B. Devine, B. Balland, Theoretical and experimental study of the conduction mechanism in Al/Ta2O5/SiO2 and Al/Ta2O5/Si3N4/Si structures. J. Non-Cryst. Solids 245, 73–78 (1999). https://doi.org/10.1016/S0022-3093(98)00873-4

    CAS  Article  Google Scholar 

  40. 40.

    J.R. Yeargan, H.L. Taylor, The Poole-Frenkel effect with compensation present. J. Appl. Phys. 39, 12 (1968). https://doi.org/10.1063/1.1656022

    Article  Google Scholar 

  41. 41.

    Y.C. Yeo, T.J. King, C. Hu, MOSFET gate leakage modeling and selection guide for alternative gate dielectric based on leakage considerations. IEEE Trans. Electron Devices 504, 1027–1035 (2003). https://doi.org/10.1109/TED.2003.812504

    CAS  Article  Google Scholar 

  42. 42.

    H. Durmuş, M. Yıldırım, Ş Altındal, On the possible conduction mechanisms in Rhenium/ n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K. J. Mater. Sci.: Mater. Electron. 30, 9029–9037 (2019). https://doi.org/10.1007/s10854-019-01233-z

    CAS  Article  Google Scholar 

  43. 43.

    E. Özavcı, S. Demirezen, U. Aydemir, Ş Altındal, A detailed study on current-voltage characteristics of Au/n-GaAs in wide temperature range. Sens. Actuators A 194, 259–268 (2013). https://doi.org/10.1016/j.sna.2013.02.018

    CAS  Article  Google Scholar 

  44. 44.

    A. Türüt, Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottky Contacts. Turkish J. Phys. 36, 235–244 (2012). https://doi.org/10.3906/fiz-1103-8

    CAS  Article  Google Scholar 

  45. 45.

    A.F. Özdemir, A. Kőkçe, A. Türüt, The effects of the time-dependent and exposure time to air on Au/n-GaAs Schottky barrier diodes. Appl. Surf. Sci. 191(1-4), 188–195 (2002). https://doi.org/10.1016/S0169-4332(02)00181-2

    Article  Google Scholar 

Download references

Acknowledgements

First author, (Çiğdem Ş. Güçlü), thanks the support of this work by The Scientific Research Projects Unit of Süleyman Demirel University (SDU-BAP) under Grant Number 4429-D2-15.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ç. Ş. Güçlü.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Güçlü, Ç.Ş., Özdemir, A.F., Aldemir, D.A. et al. The reverse bias current–voltage–temperature (IVT) characteristics of the (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs) in temperature range of 80–380 K. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05284-z

Download citation