A novel fluorescent turn-on probe for hydrogen peroxide based on carbon dots

Abstract

Detection of hydrogen peroxide is of significant importance for biological assays, and fluorescence methods are intensively reported for this purpose. Due to the highly oxidative property of this species, usually fluorescence quenching is obtained during the interactions and decreased signals. Unlike carbon quantum dots (CQD)-based probes, it has been reported so far, adding H2O2 to the probe increases the fluorescence intensity (with excitation/emission maxima at 450/530 nm). The probe has a linear response range in the 3.00 μM to 300 mM with a detection limit of 1.00 µM (at S/N = 3). It was successfully applied to the determination of H2O2 in spiked to serum samples.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    C. Samanta, Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl. Catal. A 350(2), 133–149 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Lu, Y. Jiang, W. Wei, H. Wu, M. Liu, L. Niu, W. Chen, Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization. J. Mater. Chem. 22(7), 2929–2934 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Tian, G. Wang, J. Long, J. Cui, W. Jin, D. Zeng, Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by phosphomolybdic acid supported on silica. Chin. J. Catal. 37(12), 2098–2105 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    F. Pagliari, C. Mandoli, G. Forte, E. Magnani, S. Pagliari, G. Nardone, S. Licoccia, M. Minieri, P. Di Nardo, E. Traversa, Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6(5), 3767–3775 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8(7), 579 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    S.G. Rhee, H2O2, a necessary evil for cell signaling. Science 312(5782), 1882–1883 (2006)

    Article  Google Scholar 

  7. 7.

    J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 74, 71–77 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    Z. Wang, F. Liu, X. Teng, C. Zhao, C. Lu, Detection of hydrogen peroxide in rainwater based on Mg-Al-carbonate layered double hydroxides-catalyzed luminol chemiluminescence. Analyst 136(23), 4986–4990 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    G. Shan, S. Zheng, S. Chen, Y. Chen, Y. Liu, Detection of label-free H2O2 based on sensitive Au nanorods as sensor. Colloids Surf. B 102, 327–330 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Sang, L. Zhang, Y.F. Li, L.Q. Chen, J.L. Xu, C.Z. Huang, A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal. Chim. Acta 659(1–2), 224–228 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    M. Baghayeri, A. Amiri, Z. Alizadeh, H. Veisi, E. Hasheminejad, Non-enzymatic voltammetric glucose sensor made of ternary NiO/Fe3O4-SH/para-amino hippuric acid nanocomposite. J. Electroanal. Chem. 810, 69–77 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    M. Baghayeri, H. Veisi, M. Ghanei-Motlagh, Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B 249, 321–330 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    O. Tantawi, A. Baalbaki, R. El Asmar, A. Ghauch, A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total Environ. 654, 107–117 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    S. Choi, R.M. Dickson, J. Yu, Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 41(5), 1867–1891 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)

    CAS  Article  Google Scholar 

  16. 16.

    L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4), 401–418 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    R. Hardman, A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114(2), 165–172 (2005)

    Article  Google Scholar 

  18. 18.

    A.M. Derfus, W.C. Chan, S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4(1), 11–18 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    S. Tedesco, H. Doyle, J. Blasco, G. Redmond, D. Sheehan, Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 100(2), 178–186 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    P. Jing, D. Han, D. Li, D. Zhou, D. Shen, G. Xiao, B. Zou, S. Qu, Surface related intrinsic luminescence from carbon nanodots: solvent dependent piezochromism. Nanoscale Horiz. 4(1), 175–181 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    A. Barati, M. Shamsipur, H. Abdollahi, Hemoglobin detection using carbon dots as a fluorescence probe. Biosens. Bioelectron. 71, 470–475 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    T.T. Bui, S.-Y. Park, A carbon dot–hemoglobin complex-based biosensor for cholesterol detection. Green Chem. 18(15), 4245–4253 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    S. Dolai, S.K. Bhunia, R. Jelinek, Carbon-dot-aerogel sensor for aromatic volatile organic compounds. Sens. Actuators B 241, 607–613 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47(1), 20–30 (2013)

    Article  Google Scholar 

  25. 25.

    S.K. Bhunia, S. Dolai, H. Sun, R. Jelinek, “On/off/on” hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots. Sens. Actuators B 270, 223–230 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    L.S. Walekar, P. Hu, F. Liao, X. Guo, M. Long, Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Microchim. Acta 185(1), 31 (2018)

    Article  Google Scholar 

  27. 27.

    J. Wei, L. Qiang, J. Ren, X. Ren, F. Tang, X. Meng, Fluorescence turn-off detection of hydrogen peroxide and glucose directly using carbon nanodots as probes. Anal. Methods 6(6), 1922–1927 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    D. Jiang, X. Du, Q. Liu, L. Zhou, J. Qian, K. Wang, One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol. ACS Appl. Mater. Interfaces 7(5), 3093–3100 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    M. Li, F. Xu, H. Li, Y. Wang, Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 6(11), 3670–3693 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    C. Karami, M.A. Taher, M. Shahlaei, A simple method for determination of mercury (II) ions by PNBS-doped carbon dots as a fluorescent probe. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03157-5

    Article  Google Scholar 

  31. 31.

    V.K. Singh, P.K. Yadav, S. Chandra, D. Bano, M. Talat, S.H. Hasan, Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H2O2 and glutathione in human blood serum. J. Mater. Chem. B 6(32), 5256–5268 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    H.Y. Shin, B.-G. Kim, S. Cho, J. Lee, H.B. Na, M.I. Kim, Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly (ethylene glycol) derivative. Microchim. Acta 184(7), 2115–2122 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    Y. Zhang, X. Yang, Z. Gao, In situ polymerization of aniline on carbon quantum dots: a new platform for ultrasensitive detection of glucose and hydrogen peroxide. RSC Adv. 5(28), 21675–21680 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    S. Chen, X. Hai, X.-W. Chen, J.-H. Wang, In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 86(13), 6689–6694 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    G. Su, Y. Wei, M. Guo, Direct colorimetric detection of hydrogen peroxide using 4-nitrophenyl boronic acid or its pinacol ester. Am. J. Anal. Chem. 2(08), 879 (2011)

    CAS  Article  Google Scholar 

  36. 36.

    S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun, Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43(23), 10078–10083 (2010)

    CAS  Article  Google Scholar 

  37. 37.

    H. Yang, F. Li, C. Zou, Q. Huang, D. Chen, Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim. Acta 184(7), 2055–2062 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences (Grant Number: 980547) for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Shahlaei or Changiz Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Star, B.G., Shahlaei, M. & Karami, C. A novel fluorescent turn-on probe for hydrogen peroxide based on carbon dots. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05283-0

Download citation