Effect of ammonia gas on electrical properties of boron nitride/nickel oxide (BN80/NiO20) nanocomposite


Hybrid materials exhibit excellent properties than their components. Herein, boron nitride and boron nitride/nickel oxide (BN80/NiO20) nanocomposite films were deposited by the drop-casting method. X-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy techniques have been utilized for determining structural, defect chemistry and morphological properties of deposited films. The structural analysis confirmed the formation of BN and NiO phases. Nelson–Riley Factor analysis and Raman analysis revealed the presence of defect states in BN80/NiO20 film. Electrical properties of films were studied in the presence of various concentrations of ammonia gas molecules at different temperatures. BN80/NiO20 composite film showed higher resistivity in the presence of ammonia gas than pure BN film. Variation of electrical resistivity with ammonia gas concentration has been explained through a proposed model. Also, to obtain the resistivity variation concerning ammonia gas concentrations at different temperatures, the linear regression method was used. This work insight the electrical behavior of composite material at different gas concentrations which opens these materials for exploration towards gas sensing and different functional applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    C.-H. Lin, H.-C. Fu, B. Cheng, M.-L. Tsai, W. Luo, L. Zhou, S.-H. Jang, L. Hu, J.-H. He, NPJ 2D Mater. Appl. 2, 23 (2018)

    Article  Google Scholar 

  2. 2.

    K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, J. Mater. Chem. C 5, 11992 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)

    CAS  Article  Google Scholar 

  4. 4.

    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000)

    CAS  Article  Google Scholar 

  5. 5.

    E.S. Snow, F.K. Perkins, J.A. Robinson, Chem. Soc. Rev. 35, 790 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47, 6550 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    X. Zhou, W.Q. Tian, X.-L. Wang, Sens. Actuatars B 151, 56 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Sens. Actuatars B 171, 846 (2012)

    Article  Google Scholar 

  9. 9.

    X. Deng, D. Zhang, M. Si, M. Deng, Phys. E 44, 495 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Xue, Q. Liu, G. He, K. Xu, L. Jiang, X. Hu, J. Hu, Nanoscale Res. Lett. 8, 49 (2013)

    Article  Google Scholar 

  11. 11.

    M. Kumar, A. Kumar, A.C. Abhyankar, A.C.S. Appl, Mater. Interfaces 7, 3571 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar S.H. Patil, J.-Y. Yun, Sci. Rep. 8, 8079 (2018)

  13. 13.

    Y. Yamini, M. Moradi, Sens. Actuatars B 197, 274 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Z. Mahdavifar, N. Abbasi, E. Shakerzadeh, Sens. Actuatars B 185, 512 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, A. Singh, A. Thakur, A. Kumar, Sci. Rep. 6, 35535 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    J. Wang, F. Ma, M. Sun, RSC Adv. 7, 16801 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    M.-Y. Li, C.-H. Chen, Y. Shi, L.-J. Li, Mater. Today 19, 322 (2016)

    Article  Google Scholar 

  18. 18.

    J. Meng, D. Wang, L. Cheng, M. Gao, X. Zhang, Nanotechnology 30, 074003 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    K. Maiti, T.D. Thanh, K. Sharma, D. Hui, N.H. Kim, Compos. B 123, 45 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    M. Sajjad, G. Morell, P. Feng, A.C.S. Appl, Mater. Interfaces 5, 5051 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    M. Sajjad, P. Feng, Mater. Res. Bull. 49, 35 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    Y.-H. Zhang, K.-G. Zhou, X.-C. Gou, K.-F. Xie, H.-L. Zhang, Y. Peng, Chem. Phys. Lett. 484, 266 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    K. Singh, M. Kaur, I. Chauhan, A. Awasthi, M. Kumar, A. Thakur, A. Kumar, Ceram. Int. 46, 26233 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    V. Kumar, K. Singh, M. Jain, Manju, A. Kumar, J. Sharma, A. Vij, A. Thakur, Appl. Surf. Sci. 444, 552 (2018)

  25. 25.

    V. Kumar, K. Singh, J. Sharma, A. Kumar, A. Vij, A. Thakur, J. Mater. Sci. 28, 18849 (2017)

    CAS  Google Scholar 

  26. 26.

    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015)

    Article  Google Scholar 

  27. 27.

    K. Singh, G. Kaur, M. Kaur, I. Chauhan, M. Kumar, A. Thakur, A. Kumar, Chem. Phys. Lett. 762, 138153 (2021)

    CAS  Article  Google Scholar 

  28. 28.

    K. Singh, M. Kaur, I. Chauhan, R. Meena, J. Singh, A. Thakur, A. Kumar, J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01853-0

    Article  Google Scholar 

  29. 29.

    K. Singh, A. Thakur, A. Awasthi, A. Kumar, J. Mater. Sci. 31, 13158 (2020)

    CAS  Google Scholar 

  30. 30.

    M. Kumar, B. Singh, P. Yadav, M. Kumar, K. Singh, A.C. Abhyankar, A. Kumar, J.-H. Yun, Ceram. Int. 43, 3562 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    R.G. Wyckoff, Crystal Structures (Interscience Publishers, New York, 1963).

    Google Scholar 

  32. 32.

    T. Taşköprü, F. Bayansal, B. Şahin, M. Zor, Philos. Mag. 95, 32 (2015)

    Article  Google Scholar 

  33. 33.

    H.X. Jiang, J.Y. Lin, ECS J. Solid State Sci. Technol. 6, Q3012 (2016)

    Article  Google Scholar 

  34. 34.

    B. Huang, X.K. Cao, H.X. Jiang, J.Y. Lin, S.H. Wei, Phys. Rev. B 86, 155202 (2012)

    Article  Google Scholar 

  35. 35.

    S.-J. Choi, I.-D. Kim, Electron. Mater. Lett. 14, 221 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    Z. Qin, D. Zheng, J. Zhang, C. Wu, Y. Wen, B. Shan, C. Xie, Appl. Surf. Sci. 414, 244 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, ACS Nano 7, 4879 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, ACS Nano 8, 5304 (2014)

    CAS  Article  Google Scholar 

  39. 39.

    A. Srivastava, C. Bhat, S.K. Jain, P.K. Mishra, R. Brajpuriya, J. Mol. Model. 21, 39 (2015)

    Article  Google Scholar 

  40. 40.

    M.T. Greiner, M.G. Helander, Z.B. Wang, W.-M. Tang, Z.-H. Lu, J. Phys. Chem. C 114, 19777 (2010)

    CAS  Article  Google Scholar 

  41. 41.

    M. Weber, J.Y. Kim, J.H. Lee, J.H. Kim, I. Iatsunskyi, E. Coy, P. Miele, M. Bechelany, S.S. Kim, J. Mater. Chem. A 7, 8107 (2019)

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the financial support provided by the Science and Engineering Research Board, Department of Science and Technology through project no. EMR/2016/002815. Kulwinder Singh is also thankful to Mr. Rakesh Bhargava (Branch Manager) and Simranjeet Singh (Work Manager), Ammonia Supply Company Pvt. Ltd. Derabassi, Punjab, India for providing industrial-grade anhydrous ammonia gas cylinder and constant support.

Author information



Corresponding author

Correspondence to Akshay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kaur, M., Chauhan, I. et al. Effect of ammonia gas on electrical properties of boron nitride/nickel oxide (BN80/NiO20) nanocomposite. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05278-x

Download citation