Combined experimental and TDDFT computations for the structural and optical properties for poly (ortho phenylene diamine) thin film with different surfactants

Abstract

Poly(ortho-phenylenediamine) micro-rods (PoPD) are synthesized in the acidic medium at 25 °C by an oxidative polymerization method in the absence or the presence of a soft template including the following surfactants para toluene sulfonic acid (PoPD-PTS) and trisodium citrate (PoPD-TSC). Then, the thin films of poly(ortho-phenylenediamine) (PoPD)F, toluene sulfonic acid (PoPD-PTS)F, and trisodium citrate (PoPD-TSC)F are fabricated using the physical vapor deposition method (PVD). The fabricated thin films are characterized by several techniques includes Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), UV–Vis spectroscopy (UV–Vis), scanning electron microscopy (SEM), and optical properties are interpreted in-depth. The optimization for the samples is carried out by applying density functional theory (DFT) with DMol3 and Cambridge Serial Total Energy Package (CASTEP) program. XRD measurements of thin film showed a crystal structure of monoclinic 2, and there is an increase of polymer crystallite size when used PTS and TSC surfactants in the preparation of the polymer. The study of surface morphology shows a smooth surface with uniform micro-rods for the resulting polymer. The optical constants including refractive index (n), absorption index (k) are calculated. Based on the optical measurements, the optical constants decrease with increasing photon energy while optical conductivity, and dielectric constants increase. Following the experimental analysis, the optical properties of simulated FT-IR, XRD, and CATSTEP are in good agreement with the experimental ones. (PoPD-PTS)F and (PoPD-TSC)F films are a good applicant for optoelectronics and solar cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    X. Ji, M. Leng, H. Xie, C. Wang, K.R. Dunbar, Y. Zou, L. Fang, Extraordinary electrochemical stability and extended polaron delocalization of ladder-type polyaniline-analogous polymers. Chem. Sci. 11, 12737–12745 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    L. Yang, H. Wang, H. Lü, N. Hui, Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of MicroRNA. Anal. Chim. Acta (2020). https://doi.org/10.1016/j.aca.2020.05.025

    Article  Google Scholar 

  3. 3.

    N.K. Jangid, S. Jadoun, N. Kaur, A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur. Polym. J. 125, 109485 (2020)

    Article  CAS  Google Scholar 

  4. 4.

    H.J.N.P.D. Mello, M. Mulato, Enzymatically functionalized polyaniline thin films produced with one-step electrochemical immobilization and its application in glucose and urea potentiometric biosensors. Biomed. Microdevices 22, 1–9 (2020)

    Article  CAS  Google Scholar 

  5. 5.

    Y. Wu, J. Wang, B. Ou, S. Zhao, Z. Wang, Some important issues of the commercial production of 1-D nano-PANI. Polymers 11, 681 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    J. Yang, Q. Jiang, J. Zhang, J. Xu, J. Liu, P. Liu, G. Liu, Y. Wang, F. Jiang, In situ fabricated PEDOT: PSS: PANI with enhanced thermoelectric performance by organic solvent and CSA treatment. Synth. Met. 269, 116546 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    N.K. Jangid, S. Jadoun, A. Yadav, M. Srivastava, N. Kaur, Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03318-w

    Article  Google Scholar 

  8. 8.

    G. Inzelt, Conducting Polymers: A New Era in Electrochemistry (Springer, Berlin, 2012)

    Google Scholar 

  9. 9.

    X. Lin, H. Zhang, In situ external reflection FTIR spectroelectrochemical investigation of poly (o-phenylenediamine) film coated on a platinum electrode. Electrochim. Acta 41, 2019–2024 (1996)

    CAS  Article  Google Scholar 

  10. 10.

    N. Singh, S. Singh, S. Ashraf, U. Riaz, Experimental and theoretical studies of benzoquinone modified poly (ortho-phenylenediamine): singlet oxygen generating oligomers. Colloid Polym. Sci. 298, 1443–1453 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    E. Buffon, J. Huguenin, L. da Silva, P. Carneiro, N. Stradiotto, Spectroscopic ellipsometry studies of an electrochemically synthesized molecularly imprinted polymer for the detection of an aviation biokerosene contaminant. React. Funct. Polym. 155, 104698 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    S. Samanta, P. Roy, P. Kar, Sensing of higher alcohols and selective sensing of iso-amyl alcohol by poly (o-phenylenediamine) nanofiber. IEEE Sens. J. (2020). https://doi.org/10.1109/JSEN.2020.2988885

    Article  Google Scholar 

  13. 13.

    M.S. Freund, B.A. Deore, Self-doped Conducting Polymers (Wiley, Hoboken, 2007)

    Google Scholar 

  14. 14.

    A. Samui, A. Patankar, R. Satpute, P. Deb, Synthesis and characterization of polyaniline–maleic acid salt. Synth. Met. 125, 423–427 (2001)

    Article  Google Scholar 

  15. 15.

    R. Kumar, B. Yadav, Fabrication of polyaniline (PANI)—tungsten oxide (WO3) composite for humidity sensing application. J. Inorg. Organomet. Polym Mater. 26, 1421–1427 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    M.S. Zoromba, A. Al-Hossainy, S. Mahmoud, A. Bourezgui, E. Shaaban, Improvement of the thermal stability and optical properties for poly (ortho phenylene diamine) using soft templates. J. Mol. Struct. 1221, 128792 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    D.D. Diaz, P.O. Miranda, J.I. Padron, V.S. Martín, Recent uses of iron (III) chloride in organic synthesis. Curr. Org. Chem. 10, 457–476 (2006)

    Article  Google Scholar 

  18. 18.

    A. Abed-Elmageed, MSh Zoromba, R. Hassanien, A. Al-Hossainy, Facile synthesis of spin-coated poly (4-nitroaniline) thin film: structural and optical properties. Opt. Mater. 109, 110378 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    A.F. Al-Hossainy, R.M. Abdelaal, W.N. El Sayed, Novel synthesis, structure characterization, DFT and investigation of the optical properties of cyanine dye/zinc oxide [4-CHMQI/ZnO] C nanocomposite thin film. J. Mol. Struct. 1224, 128989 (2020)

    Article  CAS  Google Scholar 

  20. 20.

    C. Lüdecke, J. Bossert, M. Roth, K.D. Jandt, Physical vapor deposited titanium thin films for biomedical applications: reproducibility of nanoscale surface roughness and microbial adhesion properties. Appl. Surf. Sci. 280, 578–589 (2013)

    Article  CAS  Google Scholar 

  21. 21.

    S.A. Mahmoud, A.A. Al-Dumiri, A.F. Al-Hossainy, Combined experimental and DFT-TDDFT computational studies of doped [PoDA + PpT/ZrO2] C nanofiber composites and its applications. Vacuum 182, 109777 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    A. Badr, A. El-Amin, A. Al-Hossainy, Elucidation of charge transport and optical parameters in the newly 1CR-dppm organic crystalline semiconductors. J. Phys. Chem. C 112, 14188–14195 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    K. Kristinaitytė, L. Dagys, J. Kausteklis, V. Klimavicius, I. Doroshenko, V. Pogorelov, N.R. Valevičienė, V. Balevicius, NMR and FTIR studies of clustering of water molecules: from low-temperature matrices to nano-structured materials used in innovative medicine. J. Mol. Liq. 235, 1–6 (2017)

    Article  CAS  Google Scholar 

  24. 24.

    A. Badr, A. El-Amin, A. Al-Hossainy, Synthesis and optical properties for crystals of a novel organic semiconductor [Ni(Cl)2{(Ph2P)2CHC(R1R2) NHNH2}]. Eur. Phys. J. B-Condens. Matter Complex Syst. 53, 439–448 (2006)

    CAS  Article  Google Scholar 

  25. 25.

    A. De Ninno, M. De Francesco, ATR-FTIR study of the isosbestic point in water solution of electrolytes. Chem. Phys. 513, 266–272 (2018)

    Article  CAS  Google Scholar 

  26. 26.

    S.M. Ibrahim, A. Bourezgui, A.F. Al-Hossainy, Novel synthesis, DFT and investigation of the optical and electrical properties of carboxymethyl cellulose/thiobarbituric acid/copper oxide [CMC + TBA/CuO] C nanocomposite film. J. Polym. Res. 27, 264 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    S.M. Ibrahim, A.F. Al-Hossainy, Synthesis, structural characterization, DFT, kinetics and mechanism of oxidation of bromothymol blue: application to textile industrial wastewater treatment. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01299-8

    Article  Google Scholar 

  28. 28.

    S.S. Tagore, J. Swaminathan, D. Manikandan, S. Gomathi, S.N. Ram, M. Ramalingam, V. Sethuraman, Molecular, vibrational (FT-IR and FT-Raman), NMR and UV spectral analysis of imidazo [1, 2-b] pyridazine using experimental and DFT calculations. Chem. Phys. Lett. 739, 136943 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    M.H. Abdel-Aziz, E.Z. El-Ashtoukhy, M. Bassyouni, A.F. Al-Hossainy, E.M. Fawzy, S.M. Abdel-Hamid, MSh Zoromba, DFT and experimental study on adsorption of dyes on activated carbon prepared from apple leaves. Carbon Lett. (2020). https://doi.org/10.1007/s42823-020-00187-1

    Article  Google Scholar 

  30. 30.

    S. Archana, R.J. Shanthi, Effect of surfactant on the chemical polymerization of o-phenylenediamine-a comparative study. Indian J. Adv. Chem. Sci. 2, 83–88 (2013)

    Google Scholar 

  31. 31.

    N. Almutlaq, A. Al-Hossainy, Novel synthesis, structure characterization, DFT and investigation of the optical properties of diphenylphosphine compound/zinc oxide [DPPB + ZnO] C nanocomposite thin film. Compos. Interfaces (2020). https://doi.org/10.1080/09276440.2020.1817682

    Article  Google Scholar 

  32. 32.

    S. Sayyah, M. El-Deeb, S. Kamal, R. Azooz, Electropolymerization of o-phenylenediamine on Pt-electrode from aqueous acidic solution: kinetic, mechanism, electrochemical studies and characterization of the polymer obtained. J. Appl. Polym. Sci. 112, 3695–3706 (2009)

    CAS  Article  Google Scholar 

  33. 33.

    H.K. Thabet, A. Al-Hossainy, M. Imran, Synthesis, characterization, and DFT modeling of novel organic compound thin films derived from 2-amino-4-(2-hydroxy-3-methoxyphenyl)-4H-thiazolo [3, 2-a][1, 3, 5] triazin-6 (7H)-one. Opt. Mater. 105, 109915 (2020)

    CAS  Article  Google Scholar 

  34. 34.

    K. Kaliavaradhan, S. Muthusamy, Synthesis and characterization of various phenylene diamine-based bismaleimide-containing phthalonitrile resins. Polym. Bull. 73, 1921–1938 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    Z. Wang, F. Liao, S. Yang, T. Guo, A novel route synthesis of poly (ortho-phenylenediamine) fluffy microspheres self-assembled from nanospheres. Fibers Polym. 12, 997–1001 (2011)

    CAS  Article  Google Scholar 

  36. 36.

    MSh Zoromba, M. Tashkandi, A.A. Alshehri, M.H. Abdel-Aziz, M. Bassyouni, S. Mahmoud, A.B. Slimane, A. Al-Hossainy, Polymer solar cell based on doped o-anthranilic acid and o-aminophenol copolymer. Opt. Mater. 104, 109947 (2020)

    CAS  Article  Google Scholar 

  37. 37.

    I. Kacem, M. Daoudi, W. Dridi, H. Sellemi, K. Harzli, G. De Izzara, B. Geslot, H. Guermazi, P. Blaise, F. Hosni, Effects of neutron–gamma radiation on the free radical contents in epoxy resin: upconversion luminescence and structural stabilization. Appl. Phys. A 125, 758 (2019)

    Article  CAS  Google Scholar 

  38. 38.

    M.H. Abdel-Aziz, MSh Zoromba, M. Bassyouni, M. Zwawi, A. Alshehri, A. Al-Hossainy, Synthesis and characterization of Co-Al mixed oxide nanoparticles via thermal decomposition route of layered double hydroxide. J. Mol. Struct. 1206, 127679 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    X. Lu, H. Mao, D. Chao, X. Zhao, W. Zhang, Y. Wei, Preparation and characterization of poly (o-phenylenediamine) microrods using ferric chloride as an oxidant. Mater. Lett. 61, 1400–1403 (2007)

    CAS  Article  Google Scholar 

  40. 40.

    A. Bourezgui, I. Kacem, I.B. Assaker, M. Gannouni, J.B. Naceur, M. Karyaoui, R. Chtourou, Synthesis of porous TiO2 thin films prepared with templating technique to improve the photoelectrochemical properties. J. Porous Mater. 23, 1085–1094 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    A. Bourezgui, I. Kacem, M. Karyaoui, R. Chtourou, Optical and photocatalytic properties of porous TiO2 thin films. Optoelectron. Adv. Mater. Rapid Commun. 10, 732–736 (2016)

    CAS  Google Scholar 

  42. 42.

    X. Sun, S. Dong, E. Wang, Large scale, templateless, surfactantless route to rapid synthesis of uniform poly (o-phenylenediamine) nanobelts. Chem. Commun. (2004). https://doi.org/10.1039/B401777C

    Article  Google Scholar 

  43. 43.

    MSh Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Attar, A.F. Al-Hossainy, Synthesis and characterization of poly (ortho-aminophenol-co-para-toluidine) and its application as semiconductor thin film. J. Mol. Struct. 1225, 129131 (2021)

    CAS  Article  Google Scholar 

  44. 44.

    H. Yadegari, H. Heli, A. Jabbari, Graphene/poly (ortho-phenylenediamine) nanocomposite material for electrochemical supercapacitor. J. Solid State Electrochem. 17, 2203–2212 (2013)

    CAS  Article  Google Scholar 

  45. 45.

    R.H. Sestrem, D.C. Ferreira, R. Landers, M.L. Temperini, G.M. do Nascimento, Synthesis and spectroscopic characterization of polymer and oligomers of ortho-phenylenediamine. Eur. Polym. J. 46, 484–493 (2010)

    CAS  Article  Google Scholar 

  46. 46.

    A. Abd-Elmageed, S. Ibrahim, A. Bourezgui, A. Al-Hossainy, Synthesis, DFT studies, fabrication, and optical characterization of the [ZnCMC]TF polymer (organic/inorganic) as an optoelectronic device. New J. Chem. 44, 8621–8637 (2020)

    CAS  Article  Google Scholar 

  47. 47.

    Q. Hao, B. Sun, X. Yang, L. Lu, X. Wang, Synthesis and characterization of poly (o-phenylenediamine) hollow multi-angular microrods by interfacial method. Mater. Lett. 63, 334–336 (2009)

    CAS  Article  Google Scholar 

  48. 48.

    S. Kansız, N. Dege, Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co (II) coordination polymer. J. Mol. Struct. 1173, 42–51 (2018)

    Article  CAS  Google Scholar 

  49. 49.

    A.F. Al-Hossainy, M.R. Eid, Structure, DFT calculations and heat transfer enhancement in [ZnO/PG + H2O] C hybrid nanofluid flow as a potential solar cell coolant application in a double-tube. J. Mater. Sci.: Mater. Electron. 31, 15243–15257 (2020)

    CAS  Google Scholar 

  50. 50.

    D.T. Reis, I.H.S. Ribeiro, D.H. Pereira, DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd2+, Cu2+ and Cr3+) potentially toxic. Polym. Bull. 77, 3443–3456 (2020)

    CAS  Article  Google Scholar 

  51. 51.

    M.R. Eid, A.F. Al-Hossainy, Synthesis, DFT calculations, and heat transfer performance large-surface TiO2: ethylene glycol nanofluid and coolant applications. Eur. Phys. J. Plus 135, 596 (2020)

    CAS  Article  Google Scholar 

  52. 52.

    F. Akman, Experimental and theoretical investigation of molecular structure, vibrational analysis, chemical reactivity, electrostatic potential of benzyl methacrylate monomer and homopolymer. Can. J. Phys. 94, 853–864 (2016)

    CAS  Article  Google Scholar 

  53. 53.

    A. Abd-Elmageed, A. Al-Hossainy, E. Fawzy, N. Almutlaq, M.R. Eid, A. Bourezgui, S. Abdel-Hamid, N. Elsharkawy, M. Zwawi, M.H. Abdel-Aziz, Synthesis, characterization and DFT molecular modeling of doped poly (para-nitroaniline-co-para-toluidine) thin film for optoelectronic devices applications. Opt. Mater. 99, 109593 (2020)

    CAS  Article  Google Scholar 

  54. 54.

    P. Demir, F. Akman, Molecular structure, spectroscopic characterization, HOMO and LUMO analysis of PU and PCL grafted onto PEMA-co-PHEMA with DFT quantum chemical calculations. J. Mol. Struct. 1134, 404–415 (2017)

    CAS  Article  Google Scholar 

  55. 55.

    U. Maschke, X. Coqueret, M. Benmouna, Electro-optical properties of polymer-dispersed liquid crystals. Macromol. Rapid Commun. 23, 159–170 (2002)

    CAS  Article  Google Scholar 

  56. 56.

    MSh Zoromba, A. Al-Hossainy, Doped poly (o-phenylenediamine-co-p-toluidine) fibers for polymer solar cells applications. Sol. Energy 195, 194–209 (2020)

    CAS  Article  Google Scholar 

  57. 57.

    M.R. Bockstaller, E.L. Thomas, Optical properties of polymer-based photonic nanocomposite materials. J. Phys. Chem. B 107, 10017–10024 (2003)

    CAS  Article  Google Scholar 

  58. 58.

    A. Al-Hossainy, MSh Zoromba, O. El-Gammal, F.I. El-Dossoki, Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct. Chem. 30, 1365–1380 (2019)

    CAS  Article  Google Scholar 

  59. 59.

    P. Malik, K. Raina, Droplet orientation and optical properties of polymer dispersed liquid crystal composite films. Opt. Mater. 27, 613–617 (2004)

    CAS  Article  Google Scholar 

  60. 60.

    A.F. Al-Hossainy, A. Ibrahim, MSh Zoromba, Synthesis and characterization of mixed metal oxide nanoparticles derived from Co–Cr layered double hydroxides and their thin films. J. Mater. Sci.: Mater. Electron. 30, 11627–11642 (2019)

    CAS  Google Scholar 

  61. 61.

    A. Al-Hossainy, M. Bassyouni, MSh Zoromba, Elucidation of electrical and optical parameters of poly (o-anthranilic acid)-poly (o-amino phenol)/copper oxide nanocomposites thin films. J. Inorg. Organomet. Polym Mater. 28, 2572–2583 (2018)

    CAS  Article  Google Scholar 

  62. 62.

    T. Phukan, D. Kanjilal, T. Goswami, H. Das, Study of optical properties of swift heavy ion irradiated PADC polymer. Radiat. Meas. 36, 611–614 (2003)

    CAS  Article  Google Scholar 

  63. 63.

    A.F. Al-Hossainy, MSh Zoromba, R. Hassanien, Eco-friendly method to synthesize and characterize 2D nanostructured (1, 2-bis (diphenyl-phosphino) ethyl) tungsten tetracarbonyl methyl red/copper oxide di-layer thin films. Bull. Mater. Sci. 41, 80 (2018)

    Article  CAS  Google Scholar 

  64. 64.

    R. Kumar, S.A. Ali, A. Mahur, H. Virk, F. Singh, S. Khan, D. Avasthi, R. Prasad, Study of optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–Vis spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1788–1792 (2008)

    CAS  Article  Google Scholar 

  65. 65.

    R. Rizk, A. Abdul-Kader, Z. Ali, M. Ali, Effect of ion bombardment on the optical properties of LDPE/EPDM polymer blends. Vacuum 83, 805–808 (2009)

    CAS  Article  Google Scholar 

  66. 66.

    K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, J.M. Hodgkiss, Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via delocalized hot excitons in polymer: fullerene photovoltaic blends. J. Am. Chem. Soc. 135, 18502–18512 (2013)

    CAS  Article  Google Scholar 

  67. 67.

    Y.-S. Jin, G.-J. Kim, S.-G. Jeon, Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49, 513–517 (2006)

    CAS  Google Scholar 

  68. 68.

    A. Al-Hossainy, A. Ibrahim, Facile synthesis, X ray single crystal and optical characterizations of Cu-diphenylphosphino-methane organic crystalline semi-conductors. J. Optoelectron. Adv. Mater. 16, 1472–1480 (2014)

    CAS  Google Scholar 

  69. 69.

    Y. Bai, Z.-Y. Cheng, V. Bharti, H. Xu, Q. Zhang, High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76, 3804–3806 (2000)

    CAS  Article  Google Scholar 

  70. 70.

    A.F. Al-Hossainy, M.R. Eid, MSh Zoromba, Prediction of molecular characteristics and molecular spectroscopy of hydrochloric acid-doped poly (ortho-anthranilic acid-co-para nitroaniline) thin film. J. Electron. Mater. 48, 8107–8115 (2019)

    CAS  Article  Google Scholar 

  71. 71.

    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28, 1394–1401 (2018)

    CAS  Article  Google Scholar 

  72. 72.

    A. Bourezgui, I. Kacem, M. Daoudi, A.F. Al-Hossainy, Influence of gamma-irradiation on structural, optical and photocatalytic performance of TiO2 nanoparticles under controlled atmospheres. J. Electron. Mater. 49, 1904–1921 (2020)

    CAS  Article  Google Scholar 

  73. 73.

    H. Mudila, P. Prasher, A. Kumar, M. Zaidi, A. Verma, Effect of temperature on the polymerization and optical conductivity of thin flexible polypyrrole/starch composites. J. Phys: Conf. Ser. 1531, 012105 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

I. H. El Azab thanks Taif University Researchers Supporting Project number (TURSP-2020/27), Taif University, Taif, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. H. Abdel-Aziz or M. Sh. Zoromba.

Ethics declarations

Conflict of interest

None of the authors of the manuscript has declared any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 223 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourezgui, A., Al-Hossainy, A.F., El Azab, I.H. et al. Combined experimental and TDDFT computations for the structural and optical properties for poly (ortho phenylene diamine) thin film with different surfactants. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05271-4

Download citation