p-Type NiO thin films obtained via an electrochemical-thermal route


The development of procedures for the synthesis of p-type NiO on top of non-degenerate semiconductors is of great interest due to the potential applications in several areas of microelectronics. In this work, p-type NiO films with different resistivity values are obtained by heating at different temperatures Ni(OH)2 layers electrodeposited on n-type monocrystalline Si substrates. Characterizations by X-ray diffraction and X-ray photoelectron spectroscopy have evidenced the phase change, from hexagonal β-Ni(OH)2 to cubic NiO for all treated samples, with improved crystallinity for higher heating temperatures. The effect of the electrochemical parameters and heat treatment temperatures on the thickness and surface morphology of the films was also analyzed by mechanical profilometry and scanning electron microscopy, respectively. The p-type behavior of the films and the electrical resistivity values were determined from electrical measurements using a two-point probe system in a sandwich configuration. Higher resistivity values were found for films subjected to higher heat treatment temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    S. Sasaki, K. Fujino, Y. Takéuchi, Proc. Japan Acad. B 55, 43 (1979)

    CAS  Article  Google Scholar 

  2. 2.

    R. Kumar, C. Baratto, G. Faglia, G. Sberveglieri, E. Bontempi, L. Borgese, Thin Solid Films 583, 233 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    T. Taşköprü, M. Zor, E. Turan, Mater. Res. Bull. 70, 633 (2015)

    Article  CAS  Google Scholar 

  4. 4.

    B.S. Mashford, T.-L. Nguyen, G.J. Wilson, P. Mulvaney, J. Mater. Chem. 20, 167 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    P. Puspharajah, S. Radhakrishna, A.K. Arof, J. Mater. Sci. 32, 3001 (1997)

    CAS  Article  Google Scholar 

  6. 6.

    H. Jiang, R.I. Gomez-Abal, P. Rinke, M. Scheffler, Phys. Rev. B 82, 045108 (2010)

    Article  CAS  Google Scholar 

  7. 7.

    I.S. Brandt, Z. Wei, F.O. Schumann, J. Kirschner, Phys. Rev. B 92, 155106 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  Google Scholar 

  9. 9.

    S. Lany, J. Osorio-Guillén, A. Zunger, Phys. Rev. B 75, 1 (2007)

    Article  CAS  Google Scholar 

  10. 10.

    D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970)

    Article  Google Scholar 

  11. 11.

    Y. Zhao, H. Wang, X. Gong, Q. Li, G. Wu, W. Li, X. Li, G. Du, J. Lumin. 186, 243 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    M. Abbasi, Z. Ibupoto, M. Hussain, O. Nur, M. Willander, Nanoscale Res. Lett. 8, 320 (2013)

    Article  CAS  Google Scholar 

  13. 13.

    S. Takami, R. Hayakawa, Y. Wakayama, T. Chikyow, Nanotechnology 21, 134009 (2010)

    Article  CAS  Google Scholar 

  14. 14.

    H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, Y. Iwasa, Appl. Phys. Lett. 92, 242107 (2008)

    Article  CAS  Google Scholar 

  15. 15.

    R.C. Korošec, P. Bukovec, Acta Chim. Slov. 53, 136 (2006)

    Google Scholar 

  16. 16.

    M.A. Vidales-Hurtado, A. Mendoza-Galván, J. Nano Res. 28, 63 (2014)

    Article  CAS  Google Scholar 

  17. 17.

    Y.G. Wang, Y.Y. Xia, Electrochim. Acta 51, 3223 (2006)

    CAS  Article  Google Scholar 

  18. 18.

    A. Venter, J.R. Botha, S. Afr, J. Sci. 107, 1 (2011)

    Google Scholar 

  19. 19.

    H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, J. Phys. Chem. C 115, 12209 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    E.A. Gibson, M. Awais, D. Dini, D.P. Dowling, M.T. Pryce, J.G. Vos, G. Boschloo, A. Hagfeldt, Phys. Chem. Chem. Phys. 15, 2411 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, R. Huber, Nat. Photonics 5, 31 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    T. Maruyama, S. Arai, I. Introduction, Sol. Energy Mater. Sol. Cells 30, 257 (1993)

    CAS  Article  Google Scholar 

  23. 23.

    J. Nagai, Sol. Energy Mater. Sol. Cells 31, 291 (1993)

    CAS  Article  Google Scholar 

  24. 24.

    M.M. Uplane, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, A.C. Sonavane, P.S. Patil, Appl. Surf. Sci. 253, 9365 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    E. Avendaño, Solid State Ionics 165, 169 (2003)

    Article  CAS  Google Scholar 

  26. 26.

    K.S. Ahn, Y.C. Nah, Y.E. Sung, Solid State Ionics 165, 155 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    M.-S. Wu, C.-H. Yang, M.-J. Wang, Electrochim. Acta 54, 155 (2008)

    CAS  Article  Google Scholar 

  28. 28.

    M.-S. Wu, C.-H. Yang, Appl. Phys. Lett. 91, 033109 (2007)

    Article  CAS  Google Scholar 

  29. 29.

    D.S. Dalavi, M.J. Suryavanshi, S.S. Mali, D.S. Patil, P.S. Patil, J. Solid State Electrochem. 16, 253 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    L.T. Quispe, C.C.P. Cid, A. Mello, I.S. Brandt, A.A. Pasa, ECS J. Solid State Sci. Technol. 6, N64 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    L.T. Quispe, I.S. Brandt, A.A. Pasa, J. Solid State Electrochem. 22, 3025 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    H. Yan, J. Bai, J. Wang, X. Zhang, B. Wang, Q. Liu, L. Liu, CrystEngComm 15, 10007 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    V.Y. Kazimirov, M.B. Smirnov, L. Bourgeois, L. Guerlou-Demourgues, L. Servant, A.M. Balagurov, I. Natkaniec, N.R. Khasanova, E.V. Antipov, Solid State Ionics 181, 1764 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    W. Chia-Ching, Y. Cheng-Fu, Nanoscale Res. Lett. 8, 33 (2013)

    Article  CAS  Google Scholar 

  35. 35.

    Y.H. Kwon, S.H. Chun, J.H. Han, H.K. Cho, Metals Mater. Int. 18, 1003 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    S. Park, H. Ahn, C.-K. Lee, H. Kim, H. Jin, H. Lee, S. Seo, J. Yu, S. Han, Phys. Rev. B 77, 134103 (2008)

    Article  CAS  Google Scholar 

  37. 37.

    J.M. McKay, V.E. Henrich, Phys. Rev. B 32, 6764 (1985)

    CAS  Article  Google Scholar 

  38. 38.

    L. Soriano, I. Preda, A. Gutiérrez, S. Palacín, M. Abbate, A. Vollmer, Phys. Rev. B 75, 233417 (2007)

    Article  CAS  Google Scholar 

  39. 39.

    R.J.O. Mossanek, I. Preda, M. Abbate, J. Rubio-Zuazo, G.R. Castro, A. Vollmer, A. Gutiérrez, L. Soriano, Chem. Phys. Lett. 501, 437 (2011)

    CAS  Article  Google Scholar 

  40. 40.

    C. Park, J. Kim, K. Lee, S.K. Oh, H.J. Kang, N.S. Park, Appl. Sci. Converg. Technol. 24, 72 (2015)

    Article  Google Scholar 

  41. 41.

    X. Fan, G. Fang, F. Cheng, P. Qin, H. Huang, Y. Li, J. Phys. D. Appl. Phys. 46, 305106 (2013)

    Article  CAS  Google Scholar 

  42. 42.

    D.S. Dalavi, R.S. Devan, R.S. Patil, Y.-R. Ma, M.-G. Kang, J.-H. Kim, P.S. Patil, J. Mater. Chem. A 1, 1035 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    M.A. van Veenendaal, G.A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993)

    Article  Google Scholar 

  44. 44.

    S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H.J. Freund, J. Phys. Condens. Matter 4, 7973 (1992)

    CAS  Article  Google Scholar 

  45. 45.

    A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, Surf. Sci. 600, 1771 (2006)

    CAS  Article  Google Scholar 

  46. 46.

    M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41, 324 (2009)

    CAS  Article  Google Scholar 

  47. 47.

    B.P. Payne, M.C. Biesinger, N.S. McIntyre, J. Electron Spectros. Relat. Phenomena 185, 159 (2012)

    CAS  Article  Google Scholar 

  48. 48.

    S. Seo, M.J. Lee, D.C. Kim, S.E. Ahn, B.-H. Park, Y.S. Kim, I.K. Yoo, I.S. Byun, I.R. Hwang, S.H. Kim, J.-S. Kim, J.S. Choi, J.H. Lee, S.H. Jeon, S.H. Hong, B.H. Park, Appl. Phys. Lett. 87, 263507 (2005)

    Article  CAS  Google Scholar 

  49. 49.

    D. Xu, X. Yu, D. Gao, C. Li, M. Zhong, H. Zhu, S. Yuan, Z. Lin, D. Yang, J. Mater. Chem. A 4, 10558 (2016)

    CAS  Article  Google Scholar 

  50. 50.

    Z. Yang, Z. Fang, J. Sheng, Z. Ling, Z. Liu, J. Zhu, P. Gao, J. Ye, Nanoscale Res. Lett. 12, 26 (2017)

    Article  CAS  Google Scholar 

  51. 51.

    W. Aloui, A. Ltaief, A. Bouazizi, Mater. Sci. Semicond. Process. 27, 170 (2014)

    CAS  Article  Google Scholar 

  52. 52.

    A. Motori, F. Sandrolini, G. Davolio, J. Power Sources 48, 361 (1994)

    CAS  Article  Google Scholar 

  53. 53.

    M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, Mater. Sci. Semicond. Process. 21, 7 (2014)

    CAS  Article  Google Scholar 

  54. 54.

    S. Sriram, A. Thayumanavan, Int. J. Mater. Sci. Eng. 1, 118 (2014)

    Google Scholar 

  55. 55.

    Y.R. Denny, K. Lee, C. Park, S.K. Oh, H.J. Kang, D.-S. Yang, S. Seo, Thin Solid Films 591, 255 (2015)

    CAS  Article  Google Scholar 

  56. 56.

    H.-L. Chen, Y.-S. Yang, Thin Solid Films 516, 5590 (2008)

    CAS  Article  Google Scholar 

  57. 57.

    S.C. Chen, C.K. Wen, T.Y. Kuo, W.C. Peng, H.C. Lin, Thin Solid Films 572, 51 (2014)

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the Brazilian agencies CAPES, CNPQ, and FINEP for supporting this research and the measurements in LDRX-UFSC (XRD). The authors thank also Prof. M. F. Cerqueira and Dr. Jérôme Borme from International Iberian Nanotechnology Laboratory for supporting during the SEM measurements. The authors acknowledge the measurements in LDRX-UFSC (XRD). The authors also thank Dr. Jérôme Borme from International Iberian Nanotechnology Laboratory (INL) for supporting the SEM measurements.


This research was supported by the Brazilian agencies CAPES, CNPQ, and FINEP.

Author information



Corresponding authors

Correspondence to L. T. Quispe or A. A. Pasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quispe, L.T., Avila, L.B., Linhares, A.A. et al. p-Type NiO thin films obtained via an electrochemical-thermal route. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05260-7

Download citation