Monolithic fabrication of vertical silicon nanowire gas sensor with a top porous copper electrode using glancing angle deposition

Abstract

Vertical Si nanowire (SiNW) gas sensor with a top porous electrode (TPE) has been reported as a highly sensitive, small footprint, and mass-producible gas sensor platform. In this article, a monolithic fabrication process for a vertical SiNW gas sensor using glancing angle deposition (GLAD) was proposed as a simple, low-cost, and large-area fabrication method, and the performance of the fabricated vertical SiNW gas sensor was evaluated via relative humidity measurement. The 1,000 nm length vertical SiNWs were uniformly fabricated on a 4-inch silicon wafer via GLAD at an oblique angle of 85° and a substrate rotation speed of 5 rpm. A Cu TPE was also fabricated via sequential GLAD without substrate rotation to realize the wafer-level vertical gas sensor from which multiple 2 × 2 cm2 vertical SiNW gas sensors were obtained by dicing. To optimize the Cu TPE fabrication process, the effects of oblique angle and deposition thickness on the conductivity and porosity of the TPE were examined; subsequently, an oblique angle of 65° and a thickness of 100 nm were selected as the optimum conditions when considering humidity measurement sensitivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

NW:

Nanowire

TPE:

Top porous electrode

SiNW:

Si nanowire

GLAD:

Glancing angle deposition

E-beam:

Electron-beam

SEM:

Scanning electron microscopy

References

  1. 1.

    M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6, 379–384 (2007). https://doi.org/10.1038/nmat1891

    CAS  Article  Google Scholar 

  2. 2.

    X. Zhou, J. Hu, C. Li, D. Ma, C. Lee, S. Lee, Silicon nanowires as chemical sensors. Chem. Phys. Lett. 369, 220–224 (2003). https://doi.org/10.1016/S0009-2614(02)02008-0

    CAS  Article  Google Scholar 

  3. 3.

    Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. 49, 6830–6835 (2010). https://doi.org/10.1002/anie.201000847

    CAS  Article  Google Scholar 

  4. 4.

    J. Hahm, C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004). https://doi.org/10.1021/nl034853b

    CAS  Article  Google Scholar 

  5. 5.

    W.U. Wang, C. Chen, K. Lin, Y. Fang, C.M. Lieber, Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. 102, 3208–3212 (2005). https://doi.org/10.1073/pnas.0406368102

    CAS  Article  Google Scholar 

  6. 6.

    E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature. 445, 519–522 (2007). https://doi.org/10.1038/nature05498

    CAS  Article  Google Scholar 

  7. 7.

    D. Wang, H. Sun, A. Chen, S.-H. Jang, A.K.-Y. Jen, A. Szep, Chemiresistive response of silicon nanowires to trace vapor of nitro explosives. Nanoscale. 4, 2628–2632 (2012). https://doi.org/10.1039/C2NR30107E

    CAS  Article  Google Scholar 

  8. 8.

    A. Cao, E. Sudhölter, L. de Smet, Silicon nanowire-based devices for gas-phase sensing. Sensors. 14, 245–271 (2014). https://doi.org/10.3390/s140100245

    CAS  Article  Google Scholar 

  9. 9.

    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293, 1289–1292 (2001). https://doi.org/10.1126/science.1062711

    CAS  Article  Google Scholar 

  10. 10.

    S. Zhao, Z. Li, G. Wang, J. Liao, S. Lv, Z. Zhu, Highly enhanced response of MoS2/porous silicon nanowire heterojunctions to NO2 at room temperature. RSC adv. 8, 11070–11077 (2018). https://doi.org/10.1039/C7RA13484C

    CAS  Article  Google Scholar 

  11. 11.

    S. Choopun, N. Hongsith, E. Wongrat, Metal-Oxide Nanowires for Gas Sensors. Nanowires-Recent Advances (intech open, London, 2012), pp. 3–24. https://doi.org/10.5772/54385

    Google Scholar 

  12. 12.

    H. Li, J. Zhang, B. Tao, L. Wan, W. Gong, Investigation of capacitive humidity sensing behavior of silicon nanowires. Physica E. 41, 600–604 (2009). https://doi.org/10.1016/j.physe.2008.10.016

    CAS  Article  Google Scholar 

  13. 13.

    H.J. In, C.R. Field, P.E. Pehrsson, Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology. 22, 355501 (2011). https://doi.org/10.1088/0957-4484/22/35/355501

    CAS  Article  Google Scholar 

  14. 14.

    J. Ju, X. Huang, S.-M. Kim, J. Yeom, Fabrication of Highly Ordered Silicon Nanowires by Metal Assisted Chemical Etching Combined with a Nanoimprinting Process. J. Nanosci. Nanotechnol. 17, 7771–7774 (2017)

    CAS  Google Scholar 

  15. 15.

    K.-Q. Peng, X. Wang, S.-T. Lee, Gas sensing properties of single crystalline porous silicon nanowires. Appl. Phys. Lett. 95, 243112 (2009). https://doi.org/10.1063/1.3275794

    CAS  Article  Google Scholar 

  16. 16.

    N. Abbas, X. Lu, M. Badshah, J. In, W. Heo, K. Park, M.-K. Lee, C. Kim, P. Kang, W.-J. Chang, Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid. Sensors. 18, 3874 (2018). https://doi.org/10.3390/s18113874

    CAS  Article  Google Scholar 

  17. 17.

    M.M. Hawkeye, M.J. Brett, Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A. 25, 1317–1335 (2007). https://doi.org/10.1116/1.2764082

    CAS  Article  Google Scholar 

  18. 18.

    H. Jang, G. Shin, H. Jang, J. Ju, J. Lim, S. Kim, Design and Fabrication of Wire Grid Polarizer by Nanoimprinting and Glancing Angle Deposition Processes. Mater. Trans. 58(3), 494–498 (2017). https://doi.org/10.2320/matertrans.M2016219

    CAS  Article  Google Scholar 

  19. 19.

    M.A. Badshah, J. Ju, X. Lu, N. Abbas, S. Kim, Enhancing the sensitivity of DNA microarrays by metal-enhanced fluorescence using vertical nanorod structures. Sensor. Actuat. B-Chem. 274, 451–457 (2018). https://doi.org/10.1016/j.snb.2018.07.163

    CAS  Article  Google Scholar 

  20. 20.

    D.P. Singh, S. Kumar, J. Singh, Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition. RSC Adv. 5, 31341–31346 (2015). https://doi.org/10.1039/C5RA03225C

    CAS  Article  Google Scholar 

  21. 21.

    X. Lu, S. Kim, S.J. Seo, Fabrication of a large-area superhydrophobic SiO2 nanorod structured surface using glancing angle deposition. J. Nanomater. (2017). https://doi.org/10.1155/2017/8305439

    Article  Google Scholar 

  22. 22.

    X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sensor. Actuat. B-Chem. 156, 631–636 (2011). https://doi.org/10.1016/j.snb.2011.02.009

    CAS  Article  Google Scholar 

  23. 23.

    A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A. Abu Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors. 14, 16343–16422 (2014). https://doi.org/10.3390/s140916343

    CAS  Article  Google Scholar 

  24. 24.

    J. Chu, X. Peng, P. Feng, Y. Sheng, J. Zhang, Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sensor. Actuat. B-Chem. 178, 508–513 (2013). https://doi.org/10.1016/j.snb.2012.12.104

    CAS  Article  Google Scholar 

  25. 25.

    Y. Feng, S. Gong, E. Du, K. Yu, J. Ren, Z. Wang, Z. Zhu, TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C. 7, 9284–9292 (2019). https://doi.org/10.1039/C9TC02785H

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1H1A2011487) and also supported by the Chung-Ang University Research Scholarship Grants in 2019.

Author information

Affiliations

Authors

Contributions

SK, XL, NA conceptualized and designed the experiments, NA, JK, JY, SL conducted the experiments, SK, XL, NA wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seok-min Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbas, N., Kim, J., Yeom, J. et al. Monolithic fabrication of vertical silicon nanowire gas sensor with a top porous copper electrode using glancing angle deposition. J Mater Sci: Mater Electron 32, 5233–5242 (2021). https://doi.org/10.1007/s10854-021-05255-4

Download citation