Optical, photoluminescence and ferromagnetic properties of Ni-doped ZnO for optoelectronic applications

Abstract

The current work presents the optical, photoluminescence and ferromagnetic properties of Zn1−xNixO samples with (0.00 ≤ x ≤ 0.20). The samples are well crystallizing in hexagonal wurtzite structure without a significant change in their lattice constants, while the crystallite size, grain size and number of unit cells in ZnO particle are increased. The residual stress is negative (compressive) and almost increases as Ni increases up to 0.10, but it is changed from negative to positive (tensile) at Ni = 0.20. The absorption and reflectance of UV spectra are increased as Ni increases up to 0.20. An absorption band centered at a wavelength of 552 nm is also observed and is gradually shifted by Ni towards longer wavelengths. Interestingly, two direct electronic transitions are found for all samples and two induced bandgaps which are decreased by Ni. While the other optical constants such as linear χ1 and non-linear third-order susceptibilities χ3, dispersion parameters (Ed, Eo), refractive indexes (no, n2), lattice dielectric constant εL, N/m*, optical and electrical conductivities (σopt, σele) are increased by Ni, the dissipation factor (tanδ) is decreased. Although some of the continuous peaks of lower PL intensities are recorded at UV band edges and slightly shifted to longer wave lengths (red shift) as Ni increases, strong UV emission peaks at about 390, 420 and 440 nm are recorded. Finally, the signature of a clear weak ferromagnetism ordering at room temperature, with evaluated magnetic parameters such as magnetization Ms, magnetic moments μ and magneto-crystalline anisotropy factor γ, is recorded for Ni ≥ 0.05 doped samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J. Jose, M. Abdul Khaddar, Mater. Sci. Eng. A 304–306, 810 (2001)

    Google Scholar 

  2. 2.

    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Google Scholar 

  3. 3.

    L. Gao, Q. Li, W. Luan, H. Kawaoka, T. Sekino, K. Niihara, J. Am. Ceram. Soc. 85(4), 1016 (2002)

    CAS  Google Scholar 

  4. 4.

    D.R. Clarke, J. Am. Ceram. Soc. 82(3), 485 (1999)

    CAS  Google Scholar 

  5. 5.

    K. Mukae, K. Tsuda, I. Nagasawa, Jpn. J. Appl. Phys. 16(8), 1361 (1977)

    CAS  Google Scholar 

  6. 6.

    G.E. Pike, C.H. Seager, J. Appl. Phys. 50(5), 3414 (1979)

    CAS  Google Scholar 

  7. 7.

    F. Oba, Y. Sato, T. Yamamoto, Y. Ikuhara, T. Sakuma, J. Am. Ceram. Soc. 86(9), 1 (2003)

    Google Scholar 

  8. 8.

    Z. Zhen, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004)

    Google Scholar 

  9. 9.

    M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41–47 (2016)

    CAS  Google Scholar 

  10. 10.

    A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)

    CAS  Google Scholar 

  11. 11.

    R. Chauhan, A. Kumar, R. Chaudhary, J. Optoelectron. Biomed. Mater. 3(1), 17 (2011)

    Google Scholar 

  12. 12.

    J. Jadhav, M. Patange, S. Biswas, Carbon Sci. Tech. 5(2), 269 (2013)

    CAS  Google Scholar 

  13. 13.

    H.M. Ali, A.M.A. Hakeem, Eur. Phys. J. Appl. Phys. 72, 10301 (2015)

    Google Scholar 

  14. 14.

    A.A. Othman, M.A. Othman, E.M.M. Ibrahim, M.A. Ali, Ceram. Int. 43, 527 (2017)

    CAS  Google Scholar 

  15. 15.

    S.A. Amin, A. Sedky, Mater. Res. Express 6, 065903 (2019)

    CAS  Google Scholar 

  16. 16.

    A. Sedky, A.M. Ali, M. Mohamed, Opt. Quantum Electron. 52, 42 (2020)

    CAS  Google Scholar 

  17. 17.

    A. Sedky, S.A. Amin, M. Mohamed, Appl. Phys. A 125, 308 (2019)

    CAS  Google Scholar 

  18. 18.

    K. Ozawa, K. Mase, Physica Status Solidi (A) 207, 277–281 (2010)

    CAS  Google Scholar 

  19. 19.

    J.-C. Deinert, D. Wegkamp, M. Meyer, C. Richter, M. Wolf, J. Stahler, Phys. Rev. Lett. 113, 057602 (2014)

    Google Scholar 

  20. 20.

    V.P. Zhukov, P.M. Echenique, E.V. Chulkov, Phys. Rev. B 82, 094302 (2010)

    Google Scholar 

  21. 21.

    L. Jihui, H. Qiang, L. Changsheng, Y. Jinghai, L. Xue, Y. Lili, W. Dandan, Z. Hongju, G. Ming, Z. Yongjun, L. Xiaoyan, W. Maobin, Appl. Surf. Sci. 256, 3365 (2010)

    Google Scholar 

  22. 22.

    J. Kaur, R.K. Kotnala, V. Gupta, K.C. Verma, Curr. Appl. Phys. 14(5), 637 (2014)

    Google Scholar 

  23. 23.

    K. Eda, IEEE Electr. Insul. Mag. 5, 28 (1989)

    Google Scholar 

  24. 24.

    J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 22, 49 (2002)

    Google Scholar 

  25. 25.

    D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    CAS  Google Scholar 

  26. 26.

    W.G. Carlson, T.K. Gupta, J. Appl. Phys. 53, 5746 (1982)

    CAS  Google Scholar 

  27. 27.

    A. Sedky, M. Abu-Abdeen, A.-M. Abdel-Aziz, Phys. B 388, 266 (2007)

    CAS  Google Scholar 

  28. 28.

    A. Sedky, S. Ayman, Y. Amal, Phys. B 404, 3519 (2009)

    CAS  Google Scholar 

  29. 29.

    A. Sedky, E. El-Suheel, Phys. Res. Int. 2010, 1 (2010)

    Google Scholar 

  30. 30.

    A.B. Glot, J. Mater. Sci. 17, 755 (2006)

    CAS  Google Scholar 

  31. 31.

    A.M.R. Senos, M.R. Santos, A.P. Moreira, J.M. Vieira, Surface and interfaces of ceramic materials, in NATO ASI Series. ed. by L.C. Dufour, C.C. Monty, G. Petot-Ervas (Kluwer Academic, London, 1988)

    Google Scholar 

  32. 32.

    A.M.R. Senos, J.M. Vieira, Proceedings of the international Conference Third Euro-Ceramics, in Duran P. ed. by J.F. Fernandez (Faenza Edit Rice Iberica Faenza, London, 1993)

    Google Scholar 

  33. 33.

    F.K. Shan, Y.S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004)

    CAS  Google Scholar 

  34. 34.

    J.P. Joshi, R. Gupta, A.K. Sood, S.V. Bhat, A.R. Raju, C.N.R. Rao, Phys. Rev. B 65, 024410 (2001)

    Google Scholar 

  35. 35.

    S.S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 94, 037305 (2005)

    Google Scholar 

  36. 36.

    J. Hite, G.T. Thaler, R. Khanna, C.R. Abernathy, S.J. Pearton, J.H. Park, A.J. Steckl, J.M. Zavada, Appl. Phys. Lett. 89, 132119 (2006)

    Google Scholar 

  37. 37.

    Y.K. Zhou, S.W. Choi, S. Kimura, S. Emura, S. Hasegawa, Supercond. Nov. Magn. 20, 429 (2007)

    CAS  Google Scholar 

  38. 38.

    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Appl. Phys. Lett. 102, 102112 (2013)

    Google Scholar 

  39. 39.

    K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    Google Scholar 

  40. 40.

    T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    CAS  Google Scholar 

  41. 41.

    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)

    Google Scholar 

  42. 42.

    A. Sedkyand, Kh.A. Ziq, Mech. Magn. Prop. 52, 99 (2012)

    Google Scholar 

  43. 43.

    S. Ramachandran, J. Narayan, J.T. Prater, Appl. Phys. Lett. 88, 242503 (2006)

    Google Scholar 

  44. 44.

    L.R. Salh, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.L. Saleh, Physica D 43(3), 35002 (2010)

    Google Scholar 

  45. 45.

    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2(10), 673 (2003)

    CAS  Google Scholar 

  46. 46.

    A. Sedky, E. El-Suheel, Chin. Phys. B 21(11), 116103 (2012)

    Google Scholar 

  47. 47.

    G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, J. Xu, J. Magn. Mater. 302(2), 340 (2006)

    CAS  Google Scholar 

  48. 48.

    G. Pei, C. Xia, S. Cao, J. Zhang, Wu. Feng, Xu. Jun, JMMM 302(2), 340 (2006)

    CAS  Google Scholar 

  49. 49.

    A. Sedky, Braz. J. Phys. 44(4), 305 (2014)

    Google Scholar 

  50. 50.

    Ü. Özgür, A. Ya, I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, C.V. Avrutin, S.J. Cho, J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  51. 51.

    A. Sedky, S.B. Mohamed, Mater. Sci. 32(1), 16 (2014)

    CAS  Google Scholar 

  52. 52.

    T. Yao, S.-K. Hong, Oxide and Nitride Semiconductors (Springer, Berlin, 2009).

    Google Scholar 

  53. 53.

    T. Hanad, http://www.Springer.com/978-3-540-88846-8(2009).

  54. 54.

    S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Chem. Eng. Civ. Eng. Mech. Eng. 227, 1–8 (2010)

    Google Scholar 

  55. 55.

    U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, Mater. Sci. Appl. 2, 1302 (2011)

    CAS  Google Scholar 

  56. 56.

    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)

    CAS  Google Scholar 

  57. 57.

    A. Sedky, Adv. Mater. Sci. Eng. 2, 1 (2018)

    Google Scholar 

  58. 58.

    F.K. Shan, Z.F. Liu, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, J. Electroceram. 13, 195 (2004)

    CAS  Google Scholar 

  59. 59.

    X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)

    CAS  Google Scholar 

  60. 60.

    X. Li, X. Cao, Xu. Liang, L. Liu, Y. Wang, J. Alloys Compd 675, 90 (2016)

    Google Scholar 

  61. 61.

    A. Sedky, M. Abu-Abdeen, A. Abdul-Aziz, A. Almulhem, Phys. B 388, 266 (2007)

    CAS  Google Scholar 

  62. 62.

    C.M. Jay, M. Sathya, K. Pushpanathan, Acta Metall. Sin. (Engl. Lett.) 28, 394 (2015)

    Google Scholar 

  63. 63.

    H.S. Wasly, J. Al-Azhar Univ. Eng. Sector 13(49), 1312 (2018)

    Google Scholar 

  64. 64.

    M. Chaari, A. Matoussi, Z. Fakhfakh, Mater. Sci. Appl. 2, 765 (2011)

    CAS  Google Scholar 

  65. 65.

    T.P. Rao, M.C.S. Kumar, A. Safarullaa, V. Ganesan, S.R. Barman, C. Sanjeeviraja, Phys. B 405(9), 2226 (2010)

    CAS  Google Scholar 

  66. 66.

    H.C. Ong, A.X.E. Zhu, G.T. Du, Appl. Phys. Lett. 80, 941 (2002)

    CAS  Google Scholar 

  67. 67.

    C. Wang, P. Zhang, J. Yue, Y. Zhang, L. Zheng, Phys. B 403, 2235 (2008)

    CAS  Google Scholar 

  68. 68.

    D.I. Rusu, G.G. Rusu, D. Luca, Acta Phys. Pol. A 119(6), 850 (2011)

    CAS  Google Scholar 

  69. 69.

    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)

    CAS  Google Scholar 

  70. 70.

    D. Bhattacharyya, S. Chaudhuri, A.K. Pal, S.K. Bhattacharyya, Vacuum 43, 1201 (1992)

    Google Scholar 

  71. 71.

    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 2 (1966)

    Google Scholar 

  72. 72.

    A. Sedky, A.M. Ali, M. Mohamed, Opt. Quantum Electron. 52, 62–78 (2020)

    Google Scholar 

  73. 73.

    R. Kumar, F. Singh, B. Angadi, J.-W. Choi, W.-K. Choi, K. Jeong, J.-H. Song, M.W. Khan, J.P. Srivastava, A. Kumar, R.P. Tandon, J. Appl. Phys. 100, 113708 (2006)

    Google Scholar 

  74. 74.

    E. Burstein, Phys. Rev. 93, 632 (1954)

    CAS  Google Scholar 

  75. 75.

    V.P. Gupta, N.M. Ravindra, Phys. Status Solidi 100, 715 (1980)

    CAS  Google Scholar 

  76. 76.

    A. Walsh, J.L.F. Da Silva, S.H. Wei, Phys. Rev. B 78, 1 (2008)

    Google Scholar 

  77. 77.

    M.Y. Ali, M.K.R. Khan, A.M.M.T. Karim, M.M. Rahman, M. Kamruzzaman, Heliyon 6, e03588 (2020)

    Google Scholar 

  78. 78.

    N.A. Subrahamanyam, A Text Book of Optics (BRJ Laboratoray, Delhi, 1977).

    Google Scholar 

  79. 79.

    T.C.S. Girisun, S. Dhanuskodi, Cryst. Res. Technol. 44, 1297 (2009)

    CAS  Google Scholar 

  80. 80.

    M. Mohamed, A.M. Abdelraheem, M.I. Abd-Elrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)

    CAS  Google Scholar 

  81. 81.

    S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    CAS  Google Scholar 

  82. 82.

    M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Appl. Opt. 24, 4493 (1985)

    CAS  Google Scholar 

  83. 83.

    L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, M. Vlček, Mater. Lett. 39, 122 (1999)

    Google Scholar 

  84. 84.

    Y.S. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B 110(43), 21412 (2006)

    CAS  Google Scholar 

  85. 85.

    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983–7985 (1996)

    CAS  Google Scholar 

  86. 86.

    X.M. Fan, J.S. Lian, L. Zhao, Y. Liu, Appl. Surf. Sci. 252, 420–424 (2005)

    CAS  Google Scholar 

  87. 87.

    T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43, 2602–2606 (2004)

    CAS  Google Scholar 

  88. 88.

    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996). https://doi.org/10.1063/1.116699

    CAS  Article  Google Scholar 

  89. 89.

    W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005). https://doi.org/10.1063/1.1923757

    CAS  Article  Google Scholar 

  90. 90.

    Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Google Scholar 

  91. 91.

    T.E. Murphy, K. Moazzami, J.D. Phillips, J. Electron. Mater. 35, 543–549 (2006)

    CAS  Google Scholar 

  92. 92.

    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    CAS  Google Scholar 

  93. 93.

    K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mcklich, J. Jassbender, T. Herrmannsdorfer, A. Bianchi, Appl. Phys. Lett. 99(1–5), 063906 (2006)

    Google Scholar 

  94. 94.

    S. Rani, B. Lal, S. Saxena, S. Shukla, J. Sol-Gel Sci. Tech. 81, 586–592 (2017)

    CAS  Google Scholar 

  95. 95.

    G. KrishnaReddy, A. JagannathaReddy, R. HariKrishna, B.M. Nagabhushana, G. RamGopal, J. Asian Ceram. Soc. 5, 350–356 (2017)

    Google Scholar 

  96. 96.

    Q. Xu, S. Zhou, H. Schmidt, J. Alloys Compd. 487, 665–667 (2009)

    CAS  Google Scholar 

  97. 97.

    E.E. Ateia, L.M. Salah, A.A.H. El-Bassuony, Inorg. Organomet. Polym. Mater. 25, 1362 (2015)

    CAS  Google Scholar 

  98. 98.

    A.A.H. El-Bassuony, H.K. Abdelsalam, J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4340-x

    Article  Google Scholar 

  99. 99.

    G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 033912 (2013)

    Google Scholar 

  100. 100.

    J.M.D. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, J. Phys. D 41, 134012 (2008)

    Google Scholar 

  101. 101.

    J.M.D. Coey, S.A. Chambers, MRS Bull. 33, 1053 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

This research has been funded by Research Deanship in University of Ha’il-Saudi Arabia through Project Number RG-20133. The authors thank Scientific Research Deanship at University of Ha’il-Saudi Arabia for funding this research project

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mansour Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M., Sedky, A., Alshammari, A.S. et al. Optical, photoluminescence and ferromagnetic properties of Ni-doped ZnO for optoelectronic applications. J Mater Sci: Mater Electron 32, 5186–5198 (2021). https://doi.org/10.1007/s10854-021-05250-9

Download citation