Nonstoichiometric perovskite CaMnO3-δ nanomaterial for photocatalytic reduction of CO2

Abstract

Nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. In this study, the nonstoichiometric perovskite CaMnO3-δ nanomaterial is reported as a potential photocatalyst under IR and visible irradiation. The as-prepared sample was characterized by Brunauer−Emmett−Teller (BET) method and the diffuse reflectance spectroscopy (DRS). The CO2 photoreduction and methanol yield over CaMnO3-δ under both infrared and visible light irradiation as a function of irradiation time and photocatalyst concentration were investigated by chemical titration and the gas chromatographic analysis (GC-FID). The first and second harmonics of Nd:YAG laser with wavelengths of 1064 and 532 nm were used as the excitation source. After 20 min of 532 nm irradiation, the methanol yield for catalyst concentration of 0.6 g/lit exhibited the highest value (1138 μmol/g), while the methanol started to degrade with the increase of irradiation time. We have shown that under visible and IR irradiations, the electron photoexcitation from the hybridized O-2p and Mn-3d eg↑1 valance band to the Mn-3d eg↑2 conduction band provided CO2•δ− anion radicals which are required for CO2 photoreduction to methanol. This study makes the nonstoichiometric CaMnO3−δ a promising active catalytic material for CO2 photoreduction to methanol under IR and visible light irradiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Q. Kuang, S. Yang, ACS Appl. Mater. Interfaces. 5, 3683 (2013). https://doi.org/10.1021/am400254n

    CAS  Article  Google Scholar 

  2. 2.

    A. Kudo, H. Kato, Chem. Phys. Lett. 331, 373 (2000). https://doi.org/10.1016/S0009-2614(00)01220-3

    CAS  Article  Google Scholar 

  3. 3.

    E. Grabowska, Appl. Catal. B 186, 97 (2016). https://doi.org/10.1016/j.apcatb.2015.12.035

    CAS  Article  Google Scholar 

  4. 4.

    Q. Wang, L. Ma, New J. Chem. 43, 2974 (2019). https://doi.org/10.1039/C8NJ04590A

    CAS  Article  Google Scholar 

  5. 5.

    P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)

    Article  Google Scholar 

  6. 6.

    J. Guo, Yz. Dai, Xj. Chen, Ll. Zhou, Th. Liu, J. Alloys Compd. 696, 226 (2017). https://doi.org/10.1016/j.jallcom.2016.11.251

    CAS  Article  Google Scholar 

  7. 7.

    T.K. Dhiman, S. Singh, Physica status solidi (a) 216, 1012 (2019). https://doi.org/10.1002/pssa.201900012

    CAS  Article  Google Scholar 

  8. 8.

    J. Qin, L. Lin, X. Wang, Chem. Commun. 54, 2272 (2018). https://doi.org/10.1039/C7CC07954K

    CAS  Article  Google Scholar 

  9. 9.

    J.M. Vohs, Chem. Rev. 113, 4136 (2013). https://doi.org/10.1021/cr300328u

    CAS  Article  Google Scholar 

  10. 10.

    S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Lassirri, H. Alamdari, Chem. Rev. 114, 10292 (2014). https://doi.org/10.1021/cr500032a

    CAS  Article  Google Scholar 

  11. 11.

    A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 134, 7600 (2012). https://doi.org/10.1021/ja3012676

    CAS  Article  Google Scholar 

  12. 12.

    M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 62, 219 (2007). https://doi.org/10.1016/j.surfrep.2007.03.002

    CAS  Article  Google Scholar 

  13. 13.

    J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu, J. Chen, Inorg. Chem. 53, 9106 (2014). https://doi.org/10.1021/ic501631h

    CAS  Article  Google Scholar 

  14. 14.

    Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee, M. Liu, Y. Chen, J. Mater. Chem. A 7, 5875 (2019). https://doi.org/10.1039/C8TA12477A

    CAS  Article  Google Scholar 

  15. 15.

    M. Sotoudeh, S. Rajpurohit, P. Blöchl, D. Mierwaldt, J. Norpoth, V. Roddatis, S. Mildner, B. Kressdorf, B. Ifland, C. Jooss, Phys. Rev. B 95, 235150 (2017)

    Article  Google Scholar 

  16. 16.

    B. Barrocas, S. Sério, A. Rovisco, M.E. Melo Jorge, J. Phys. Chem. C 118, 590 (2014). https://doi.org/10.1021/jp412016a

    CAS  Article  Google Scholar 

  17. 17.

    M. Soleimani Varaki, A. Jafari, M. Ebrahimizadeh Abrishami, J Laser Appl 32, 042005 (2020). https://doi.org/10.2351/1.5129147

    CAS  Article  Google Scholar 

  18. 18.

    C.J. Cleveland, R.U. Ayres, Encyclopedia of Energy, 2nd edn. (Elsevier Academic Press, Amsterdam, 2004), pp. 835–844

    Google Scholar 

  19. 19.

    E.A. Karlsson, B.-L. Lee, T. Åkermark, E.V. Johnston, M.D. Kärkäs, J. Sun, ö Hansson, J.-E. Bäckvall, B. Åkermark, Angewandte Chemie International Edition 50, 11715 (2011). https://doi.org/10.1002/anie.201104355

    CAS  Article  Google Scholar 

  20. 20.

    M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 517, 99 (2015). https://doi.org/10.1038/nature13991

    CAS  Article  Google Scholar 

  21. 21.

    X. Han, Y. Hu, J. Yang, F. Cheng, J. Chen, Chem. Commun. 50, 1497 (2014). https://doi.org/10.1039/C3CC48207C

    CAS  Article  Google Scholar 

  22. 22.

    T. Qiu, B. Tu, D. Saldana-Greco, A.M. Rappe, ACS Catalysis 8, 2218 (2018). https://doi.org/10.1021/acscatal.7b03987

    CAS  Article  Google Scholar 

  23. 23.

    M. EbrahimizadehAbrishami, M. Risch, J. Scholz, V. Roddatis, N. Osterthun, C. Jooss, Materials 9, 921 (2016)

    Article  Google Scholar 

  24. 24.

    D. Mierwaldt, V. Roddatis, M. Risch, J. Scholz, J. Geppert, M. Ebrahimizadeh Abrishami, C.H. Jooss, Adv Sustain Syst 1, 1700109 (2017). https://doi.org/10.1002/adsu.201700109

    CAS  Article  Google Scholar 

  25. 25.

    K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed, J. Environ. Sci. Health Part A 45, 1413 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    A.D Eaton, L.S Clesceri, APH Association. (1995) Standard Methods for the Examination of Water and Wastewater. American Public Health Association.

  27. 27.

    M. Ebrahimizadeh Abrishami, M. Risch, J. Scholz, V. Roddatis, N. Osterthun, C. Jooss, Materials (Basel) 9, 921 (2016). https://doi.org/10.3390/ma9110921

    CAS  Article  Google Scholar 

  28. 28.

    D. Roessler, Br. J. Appl. Phys. 16, 1119 (1965)

    CAS  Article  Google Scholar 

  29. 29.

    R. Ray, A. Himanshu, P. Sen, U. Kumar, M. Richter, T. Sinha, J. Alloy. Compd. 705, 497 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    J. Jung, K. Kim, D. Eom, T. Noh, E. Choi, J. Yu, Y. Kwon, Y. Chung, Physical Review B 55, 15489 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    E. Mostovshchikova, S. Naumov, A. Makhnev, N. Solin, S. Telegin, J. Exp. Theor. Phys. 118, 297 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, Chem. Commun. 48, 9729 (2012). https://doi.org/10.1039/C2CC35289C

    CAS  Article  Google Scholar 

  33. 33.

    F. Fresno, P. Jana, P. Brasa, J. Coronado, D. Serrano, V. de la Peña O’Shea, Photochem. Photobiol. Sci. 16, 17 (2016). https://doi.org/10.1039/C6PP00235H

    CAS  Article  Google Scholar 

  34. 34.

    W. Dai, J. Yu, H. Xu, X. Hu, X. Luo, L. Yang, X. Tu, CrystEngComm. (2016). https://doi.org/10.1039/C6CE00248J

    Article  Google Scholar 

  35. 35.

    S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu, F. Yang, W. Zhu, Ch. Wang, Z. Feng, B. Ye, Y. Xie, J. Am. Chem. Soc. 139, 3438 (2017). https://doi.org/10.1021/jacs.6b11263

    CAS  Article  Google Scholar 

  36. 36.

    M.V. Nogueira, G.M.M.M. Lustosa, Y. Kobayakawa, W. Kogler, M. Ruiz, E.S. Monteiro Filho, M.A. Zaghete, L.A. Perazolli, Adva Mater Sci Eng 2018, 7326240 (2018). https://doi.org/10.1155/2018/7326240

    CAS  Article  Google Scholar 

  37. 37.

    A. Yahaya, M. Gondal, A. Hameed, Chem. Phys. Lett. 400, 206 (2004)

    CAS  Article  Google Scholar 

  38. 38.

    S.-Y. Lee, S.-J. Park, J. Ind. Eng. Chem. 19, 1761 (2013). https://doi.org/10.1016/j.jiec.2013.07.012

    CAS  Article  Google Scholar 

  39. 39.

    S.P. Adhikari, A. Lachgar, J. Phys: Conf. Ser. 758, 012017 (2016). https://doi.org/10.1088/1742-6596/758/1/012017

    CAS  Article  Google Scholar 

  40. 40.

    L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai, H. Gu, J. Alloy. Compd. 690, 771 (2017). https://doi.org/10.1016/j.jallcom.2016.08.197

    CAS  Article  Google Scholar 

  41. 41.

    P.D. Nolan, M.C. Wheeler, J.E. Davis, C.B. Mullins, Acc. Chem. Res. 31, 798 (1998). https://doi.org/10.1021/ar960278p

    CAS  Article  Google Scholar 

  42. 42.

    L. Zhang, S. Wang, C. Lu, Anal. Chem. 87, 7313 (2015). https://doi.org/10.1021/acs.analchem.5b02267

    CAS  Article  Google Scholar 

  43. 43.

    S. Wu, Y. Yang, C. Lu, Y. Ma, S. Yuan, G. Qian, Eur. J. Inorg. Chem. 2018, 2944 (2018). https://doi.org/10.1002/ejic.201800423

    CAS  Article  Google Scholar 

  44. 44.

    A. Al-Omari, Z. Yamani, H. Nguyen, Molecules 23, 2835 (2018)

    Article  Google Scholar 

  45. 45.

    O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Lett. 9, 731 (2009). https://doi.org/10.1021/nl803258p

    CAS  Article  Google Scholar 

  46. 46.

    P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Nano Res. 9, 3478 (2016). https://doi.org/10.1007/s12274-016-1225-4

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Jafari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soleimani Varaki, M., Jafari, A. & Ebrahimizadeh Abrishami, M. Nonstoichiometric perovskite CaMnO3-δ nanomaterial for photocatalytic reduction of CO2. J Mater Sci: Mater Electron 32, 5165–5175 (2021). https://doi.org/10.1007/s10854-021-05248-3

Download citation