AC conductivity and dielectric properties of 98[20Li2O-xBi2O3-(80-x)TeO2]-2Ag mixed ionic-electronic glasses

Abstract

Mixed ionic-electronic 98[20Li2O-xBi2O3-(80-x)TeO2]-2Ag (x = 3, 5, 7, 11, 13 and 15 mol%) glasses were prepared by melt-quenching technique to investigate their AC conductivity and dielectric properties. Structural analysis revealed the increase of non-bridging oxygen (NBO) up to x = 5 mol% before dropping at x = 7 mol% followed by a further increase at x > 7 mol%. The nonlinear behaviour of AC conductivity with Bi2O3 showed an initial increase in \(\sigma\) AC until reaching a minimum at x = 7 and 11 mol% before increasing again at x > 11 mol%. The minimum is suggested to be due to the blocking effects of Bi2O3 towards ionic conduction caused by mixed ionic-electronic (MIE) effect. Other than that, dielectric constant displayed an anomalous decrease at x = 7 mol% followed by a steep increase at x > 7 mol%. This decrease could also be related to blocking effects induced by MIE that contributes to a reduction of space charge polarization. The anomalous decrease at x = 7 mol% coincided with a minimum of \(\sigma\) AC for the same glass composition. Meanwhile, another nonlinear behaviour is observed on M′ with a maximum at x = 7 and 11 mol% which coincided with the location of \(\sigma\) AC minimum that may be due to MIE effect attributed to the blocking effect of Bi2O3 to migrating ions which then led to high resistance. Electrical modulus analysis reveals the non-Debye relaxation nature for the glass samples indicating the presence of dynamic ions processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    D. Souri, Effect of molybdenum trioxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44(4), 717–721 (2011)

    Google Scholar 

  2. 2.

    M.A. Sidkey, M.S. Gaafar, Ultrasonic studies on the network structure of ternary TeO2–WO3–K2O glass system. Phys. B: Condensed Matter. 348(1–4), 46–55 (2004)

    CAS  Google Scholar 

  3. 3.

    M.A. Sidkey, R. El-Mallawany, R.I. Nakhla, A. Abd El-Moneim, Ultrasonic attenuation at low temperature of TeO2–V2O5 glasses. Phys. Status Solidi (a) 159(2), 397–404 (1997)

    CAS  Google Scholar 

  4. 4.

    H. Desirena, A. Schülzgen, S. Sabet, G. Ramos-Ortiz, E. De la Rosa, N. Peyghambarian, Effect of alkali metal oxides R2O (R= Li, Na, K, Rb and Cs) and network intermediate MO (M= Zn, Mg, Ba and Pb) in tellurite glasses. Opt. Mater. 31(6), 784–789 (2009)

    CAS  Google Scholar 

  5. 5.

    L.S. El-Deen, M.S. Al Salhi, M.M. Elkholy, IR and UV spectral studies for rare earths-doped tellurite glasses. J. of Alloy. and Compd. 465(1–2), 333–339 (2008)

    CAS  Google Scholar 

  6. 6.

    J. Lin, W. Huang, Z. Sun, C.S. Ray, D.E. Day, Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J. of Non-Cryst. Solids. 336(3), 189–194 (2004)

    CAS  Google Scholar 

  7. 7.

    P. Nandi, G. Jose, Erbium-doped phospho-tellurite glasses for 15 μm optical amplifiers. Opt. Commun. 265(2), 588–593 (2006)

    CAS  Google Scholar 

  8. 8.

    R. El-Mallawany, A. Abousehly, E. Yousef, Elastic moduli of tricomponent tellurite glasses TeO2-V2O5-Ag2O. J. of Mater. Sci. Lett. 19(5), 409–411 (2000)

    Google Scholar 

  9. 9.

    M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.148

    Article  Google Scholar 

  10. 10.

    S. Chandra, Superionic Solids: Principles and Applications (North-Holland, Amsterdam, 1981), p. 56

    Google Scholar 

  11. 11.

    K. Pach, E. Golis, M. Sitarz, J. Filipecki, Structural studies of tellurite glasses doped with erbium ions. J. of Mol. Struct. 1164, 328–333 (2018)

    CAS  Google Scholar 

  12. 12.

    D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. of Non-Cryst. Solids. 354(52–54), 5573–5579 (2008)

    CAS  Google Scholar 

  13. 13.

    K. Keshavamurthy, B. Eraiah, Transport properties of lithium ions doped vanado-bismuth-tellurite glasses. AIP Conf. Proceed. (2016). https://doi.org/10.1063/1.4948023

    Article  Google Scholar 

  14. 14.

    A. Moguš-Milanković, A. Šantić, V. Ličina, D.E. Day, Dielectric behaviour and impedance spectroscopy of bismuth iron phosphate glasses. J. of Non-Cryst. Solids. 351(40–42), 3235–3245 (2005)

    Google Scholar 

  15. 15.

    L. Bih, M. El Omari, J.M. Réau, M. Haddad, D. Boudlich, A. Yacoubi, A. Nadiri, Electronic and ionic conductivity of glasses inside the Li2O–MoO3–P2O5 system. Solid State Ion. 132(1–2), 71–85 (2000)

    CAS  Google Scholar 

  16. 16.

    J.E. Garbarczyk, P. Machowski, M. Wasiucionek, W. Jakubowski, Electrical properties of AgI–Ag2O–V2O5–P2O5 glasses. Solid State Ion. 157(1–4), 269–273 (2003)

    CAS  Google Scholar 

  17. 17.

    G.D.L.K. Jayasinghe, M.A.K.L. Dissanayake, P.W.S.K. Bandaranayake, J.L. Souquet, D. Foscallo, Electronic to ionic conductivity of glasses in the Li2O–V2O5–TeO2 system. Solid State Ion. 121(1–4), 19–23 (1999)

    CAS  Google Scholar 

  18. 18.

    J.E. Garbarczyk, M. Wasiucionek, P. Jóźwiak, L. Tykarski, J.L. Nowiński, Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ion. 154, 367–373 (2002)

    Google Scholar 

  19. 19.

    D. Dutta, A. Ghosh, Dynamics of Ag+ ions in binary tellurite glasses. Phys. Rev. B 72(2), 024201 (2005)

    Google Scholar 

  20. 20.

    M.L. Ferreira Nascimento, Determination of mobility and charge carriers concentration from ionic conductivity in sodium germanate glasses above and below. Int Sch. Res. Not (2013). https://doi.org/10.1155/2013/240571

    Article  Google Scholar 

  21. 21.

    M. Sayer, A. Mansingh, Transport properties of semiconducting phosphate glasses. Phys. Rev. B 6(12), 4629 (1972)

    CAS  Google Scholar 

  22. 22.

    N.F. Mott, Conduction in glasses containing transition metal ions. J. of Non-Cryst. Solids 1(1), 1–17 (1968)

    CAS  Google Scholar 

  23. 23.

    I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. in Phys. 18(71), 41–102 (1969)

    CAS  Google Scholar 

  24. 24.

    A.E. Owen, The electrical properties of glasses. J. of Non-Cryst. Solids 25(1–3), 370–423 (1977)

    CAS  Google Scholar 

  25. 25.

    A.M. Ibrahim, Y.H. Elbashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, Mixed ionic–polaronic conduction in copper sodium phosphate glasses containing aluminium oxide. J Microwave Power Electromagnet Energy 51(1), 71–89 (2017)

    Google Scholar 

  26. 26.

    S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J Alloys Compd. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211

    CAS  Article  Google Scholar 

  27. 27.

    S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO· Bi2O3· B2O3 (M= Ba, Sr) glasses. Mater. Chem. and Phys. 90(1), 83–89 (2005)

    CAS  Google Scholar 

  28. 28.

    D.K. Durga, N. Veeraiah, Dielectric dispersion in ZnF2-Bi2O3-TeO2 glass system. J. of Mater. Sci. 36(23), 5625–5632 (2001)

    CAS  Google Scholar 

  29. 29.

    K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Dielectric dispersion in lithium–bismuth-borate glasses. Curr. Appl. Phys. 11(1), 55–60 (2011)

    Google Scholar 

  30. 30.

    J.E. Garbarczyk, M. Wasiucionek, P. Machowski, W. Jakubowski, Transition from ionic to electronic conduction in silver–vanadate–phosphate glasses. Solid State Ion. 119(1–4), 9–14 (1999)

    CAS  Google Scholar 

  31. 31.

    R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, R.H.Y. Subban, The anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20–x) MnO2–80TeO2 glass system. Mater. Express 6(2), 149–160 (2016)

    CAS  Google Scholar 

  32. 32.

    M. Shapaan, F.M. Ebrahim, Structural and electric–dielectric properties of B2O3–Bi2O3–Fe2O3 oxide glasses. Phys. B: Condens. Matter. 405(16), 3217–3222 (2010)

    CAS  Google Scholar 

  33. 33.

    R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, AC conductivity and dielectric behaviour in mixed electronic-ionic 30Li2O–4MoO3–(66–x) TeO2xV2O5 glass system. Ion. 23(6), 1423–1437 (2017)

    CAS  Google Scholar 

  34. 34.

    J. Lu, K.S. Moon, J. Xu, C.P. Wong, Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. of Mater. Chem. 16(16), 1543–1548 (2006)

    CAS  Google Scholar 

  35. 35.

    L. Murawski, R.J. Barczyński, Electronic and ionic relaxations in oxide glasses. Solid State Ion. 176(25–28), 2145–2151 (2005)

    CAS  Google Scholar 

  36. 36.

    S. Bahniwal, A. Sharma, S. Aggarwal, S.K. Deshpande, Dielectric spectroscopy of silver nanoparticle embedded soda glass. J. of Appl. Phys. 104(6), 064318 (2008)

    Google Scholar 

  37. 37.

    G.V. Rao, H.D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass. J. of Non-Cryst. solids 402, 204–209 (2014)

    CAS  Google Scholar 

  38. 38.

    A.A. Ali, M.H. Shaaban, Electrical properties and scaling behaviour of Sm3+ doped CaF2-bismuth borate glasses. Bull. of Mater. Sci. 34(3), 491–498 (2011)

    CAS  Google Scholar 

  39. 39.

    N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)

    CAS  Google Scholar 

  40. 40.

    M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2–TiO2–Li2B4O7 glass system. J. Alloys Compd. 710, 312–322 (2017)

    CAS  Google Scholar 

  41. 41.

    L. Wu, Y. Zhou, Z. Zhou, P. Cheng, B. Huang, F. Yang, J. Li, Effect of silver nanoparticles on the 1.53 μm fluorescence in Er3+/Yb3+ codoped tellurite glasses. J. Opt. Mat. 57, 185–192 (2016)

    CAS  Google Scholar 

  42. 42.

    M.R. Dousti, M.R. Sahar, R.J. Amjad, S.K. Ghoshal, A. Awang, Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium zinc tellurite glass. J. Lumin. 143, 368–373 (2013)

    CAS  Google Scholar 

  43. 43.

    T. Sankarappa, M.P. Kumar, G.B. Devidas, N. Nagaraja, R. Ramakrishnareddy, AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses. J. of Mol. Struct. 889(1–3), 308–315 (2008)

    CAS  Google Scholar 

  44. 44.

    A. Azuraida, M.K. Halimah, A.A. Sidek, C.A.C. Azurahanim, S.M. Iskandar, M. Ishak, A. Nurazlin, Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Lett. 12(10), 497–503 (2015)

    CAS  Google Scholar 

  45. 45.

    M.S. Sutrisno, R. Hisam, N.M. Samsudin, Anomalous Behavior of Optical Properties in Mixed Ionic-Electronic. Int. J. Electroactive Mater. 7(2019), 53–66 (2019)

    Google Scholar 

  46. 46.

    M.H. Mahmoud, T.A. Taha, FTIR and Mössbauer Spectroscopy Investigations of Ag/FexAl2−xO3 Nanocomposites. J. of Electron. Mater. 48(11), 7396–7403 (2019)

    CAS  Google Scholar 

  47. 47.

    A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2020)

    CAS  Google Scholar 

  48. 48.

    T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive Study of Structural, Magnetic and Dielectric Properties of Borate/Fe3O4 Glass Nanocomposites. J. of Electron. Mater. 49(2), 1161–1166 (2020)

    CAS  Google Scholar 

  49. 49.

    T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128162

    Article  Google Scholar 

  50. 50.

    T.A. Taha, M.M. El-Molla, Green simple preparation of LiNiO2 nanopowder for lithium ion battery. J. Mater. Res. Technol. 9(4), 7955–7960 (2020)

    CAS  Google Scholar 

  51. 51.

    D. Rajesh, A. Balakrishna, Y.C. Ratnakaram, Luminescence, structural and dielectric properties of Sm3+ impurities in strontium lithium bismuth borate glasses. Opt. Mater. 35(2), 108–116 (2012)

    CAS  Google Scholar 

  52. 52.

    H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Mater. Res. and Technol. 9(4), 9189–9194 (2020)

    CAS  Google Scholar 

  53. 53.

    T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian Ceram. Soc. (2020). https://doi.org/10.1080/21870764.2020.1812839

    Article  Google Scholar 

  54. 54.

    T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni05Zn05Fe2O4. Appl. Phys. A 126(9), 1–10 (2020)

    Google Scholar 

  55. 55.

    T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. and Phys. 255, 123574 (2020)

    CAS  Google Scholar 

  56. 56.

    A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. Silicon 12(1), 13–20 (2020)

    CAS  Google Scholar 

  57. 57.

    A.O. Hulpus, J.H. Monteiro, S.K. Mendiratta, M.F. Carrasco, I. Ardelean, Electrical impedance spectroscopy and ageing behaviour of glasses containing silver oxide and metallic silver nanoparticles. J. of Non-Cryst. Solids 352(9–20), 1495–1500 (2006)

    CAS  Google Scholar 

  58. 58.

    P. Jozwiak, J.E. Garbarczyk, Mixed electronic–ionic conductivity in the glasses of the Li2O–V2O5–P2O5 system. Solid State Ion. 176(25–28), 2163–2166 (2005)

    CAS  Google Scholar 

  59. 59.

    Jonscher, A. K. (1992). The Universal Dielectric response and its Physical Significance. IEEE Transactions on Electrical Insulation 2(June).

  60. 60.

    S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)

    CAS  Google Scholar 

  61. 61.

    S. Dhankhar, R.S. Kundu, R. Parmar, S. Murugavel, R. Punia, N. Kishore, Electronic transport and relaxation studies in bismuth modified zinc boro-tellurite glasses. Solid State Sci. 48, 230–236 (2015)

    CAS  Google Scholar 

  62. 62.

    R.A. Montani, A. Lorente, M.A. Vincenzo, Effect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses. Solid State Ion. 130(1–2), 91–95 (2000)

    CAS  Google Scholar 

  63. 63.

    N.A. Wójcik, M. Prześniak-Welenc, P. Kupracz, J. Karczewski, M. Gazda, R.J. Barczyński, Mixed ionic–electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2VO5. Phys. Status Solidi (b) 254(9), 1700093 (2017)

    Google Scholar 

  64. 64.

    R.M. Mahani, S.Y. Marzouk, AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses. J. of Alloy. and Compd. 579, 394–400 (2013)

    CAS  Google Scholar 

  65. 65.

    R.B. Rao, N.O. Gopal, N. Veeraiah, Studies on the influence of V2O5 on dielectric relaxation and ac conduction phenomena of Li2O–MgO–B2O3 glass system. J. Alloy. and Compd. 368(1–2), 25–37 (2004)

    CAS  Google Scholar 

  66. 66.

    S. Bhattacharya, A. Acharya (2020), Dielectric properties of oxide glass composites. In Metal Oxide Glass Nanocomposites. (Elsevier) pp. 233–246

  67. 67.

    P.R. Rejikumar, P.V. Jyothy, S. Mathew, V. Thomas, N.V. Unnikrishnan, Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass. Phys. B: Condens. Matter. 405(6), 1513–1517 (2010)

    CAS  Google Scholar 

  68. 68.

    G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    CAS  Google Scholar 

  69. 69.

    P.S.G. Rao, R. Siripuram, S. Sripada, Impedance analysis of TeO2-SeO2-Li2O nano glass system. Results Phys. 13, 102133 (2019)

    Google Scholar 

  70. 70.

    S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloy. Compd. 597, 110–118 (2014)

    CAS  Google Scholar 

  71. 71.

    E. Mansour, G.M. El-Damrawi, Y.M. Moustafa, S. Abd El-Maksoud, H. Doweidar, Polaronic conduction in barium borate glasses containing iron oxide. Phys. B: Condens. Matter. 293(3–4), 268–275 (2001)

    CAS  Google Scholar 

  72. 72.

    S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLiMo2O8 electroceramics. Phys. B: Condens. Matter. 355(1–4), 188–201 (2005)

    CAS  Google Scholar 

  73. 73.

    M.M. Elkholy, L.S. El-Deen, The dielectric properties of TeO2–P2O5 glasses. Mater. Chem. and Phys. 65(2), 192–196 (2000)

    CAS  Google Scholar 

  74. 74.

    A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12(12), 2148–2154 (2010)

    CAS  Google Scholar 

  75. 75.

    S.J. Japari, A.K. Yahya, R. Hisam, Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20–x) K2O–30V2O5-50TeO2 glasses. Results in Phys. 16, 102905 (2020)

    Google Scholar 

  76. 76.

    M. Aslam, I.S. Mulla, K. Vijayamohanan, Insulator–metal transition in Coulomb blockade nanostructures. Appl. Phys. Lett. 79(5), 689–691 (2001)

    CAS  Google Scholar 

  77. 77.

    V.D. Okunev, R. Szymczak, M. Baran, H. Szymczak, P. Gierłowski, Effect of Coulomb blockade on the low-and high-temperature resistance of La1− xMxMnO3 (M= Sr, Ca) films. Phys. Rev. B 74(1), 014404 (2006)

    Google Scholar 

  78. 78.

    X. Man, F. Jun-qiang, C. Xiao-long, Conductive property of metal nanoparticle/polymer composite dielectrics. In 2008 Int. Symposium on Electr. Insulating Mater. (ISEIM 2008) (IEEE, 2008) pp. 83-86

  79. 79.

    R. Vaish, K.B.R. Varma, Dielectric properties of Li2O–3B2O3 glasses. J. Appl. Phys. 106(6), 064106 (2009)

    Google Scholar 

  80. 80.

    S.K. Barik, R.N.P. Choudhary, A.K. Singh, Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv. Mat. Lett 2(6), 419–424 (2011)

    CAS  Google Scholar 

  81. 81.

    S. Suresh, M. Prasad, V.C. Mouli, AC conductivity and impedance measurements in alkali boro-tellurite glasses. J. Non-Cryst. Solids 356(31–32), 1599–1603 (2010)

    CAS  Google Scholar 

  82. 82.

    V. Thakur, A. Singh, R. Punia, S. Dahiya, L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass-ceramics. J. Alloy. Compd. 696, 529–537 (2017)

    CAS  Google Scholar 

  83. 83.

    A. Yadav, S. Khasa, A. Hooda, M.S. Dahiya, A. Agarwal, P. Chand, EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions. Spectrochimica Acta Part A: Mol. and Biomol. Spectrosc. 157, 129–137 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Research Management Centre (RMC), Universiti Teknologi MARA for assistance throughout the research. This study was financially supported by the Ministry of Education Malaysia under the Fundamental Research Grant Scheme (FRGS), 600-IRMI/FRGS 5/3 (122/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Hisam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sutrisno, M.S., Samsudin, N.M., Sazali, E.S. et al. AC conductivity and dielectric properties of 98[20Li2O-xBi2O3-(80-x)TeO2]-2Ag mixed ionic-electronic glasses. J Mater Sci: Mater Electron 32, 5138–5155 (2021). https://doi.org/10.1007/s10854-021-05246-5

Download citation