Abstract
Mixed ionic-electronic 98[20Li2O-xBi2O3-(80-x)TeO2]-2Ag (x = 3, 5, 7, 11, 13 and 15 mol%) glasses were prepared by melt-quenching technique to investigate their AC conductivity and dielectric properties. Structural analysis revealed the increase of non-bridging oxygen (NBO) up to x = 5 mol% before dropping at x = 7 mol% followed by a further increase at x > 7 mol%. The nonlinear behaviour of AC conductivity with Bi2O3 showed an initial increase in \(\sigma\) AC until reaching a minimum at x = 7 and 11 mol% before increasing again at x > 11 mol%. The minimum is suggested to be due to the blocking effects of Bi2O3 towards ionic conduction caused by mixed ionic-electronic (MIE) effect. Other than that, dielectric constant displayed an anomalous decrease at x = 7 mol% followed by a steep increase at x > 7 mol%. This decrease could also be related to blocking effects induced by MIE that contributes to a reduction of space charge polarization. The anomalous decrease at x = 7 mol% coincided with a minimum of \(\sigma\) AC for the same glass composition. Meanwhile, another nonlinear behaviour is observed on M′ with a maximum at x = 7 and 11 mol% which coincided with the location of \(\sigma\) AC minimum that may be due to MIE effect attributed to the blocking effect of Bi2O3 to migrating ions which then led to high resistance. Electrical modulus analysis reveals the non-Debye relaxation nature for the glass samples indicating the presence of dynamic ions processes.
This is a preview of subscription content, access via your institution.
















References
- 1.
D. Souri, Effect of molybdenum trioxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44(4), 717–721 (2011)
- 2.
M.A. Sidkey, M.S. Gaafar, Ultrasonic studies on the network structure of ternary TeO2–WO3–K2O glass system. Phys. B: Condensed Matter. 348(1–4), 46–55 (2004)
- 3.
M.A. Sidkey, R. El-Mallawany, R.I. Nakhla, A. Abd El-Moneim, Ultrasonic attenuation at low temperature of TeO2–V2O5 glasses. Phys. Status Solidi (a) 159(2), 397–404 (1997)
- 4.
H. Desirena, A. Schülzgen, S. Sabet, G. Ramos-Ortiz, E. De la Rosa, N. Peyghambarian, Effect of alkali metal oxides R2O (R= Li, Na, K, Rb and Cs) and network intermediate MO (M= Zn, Mg, Ba and Pb) in tellurite glasses. Opt. Mater. 31(6), 784–789 (2009)
- 5.
L.S. El-Deen, M.S. Al Salhi, M.M. Elkholy, IR and UV spectral studies for rare earths-doped tellurite glasses. J. of Alloy. and Compd. 465(1–2), 333–339 (2008)
- 6.
J. Lin, W. Huang, Z. Sun, C.S. Ray, D.E. Day, Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J. of Non-Cryst. Solids. 336(3), 189–194 (2004)
- 7.
P. Nandi, G. Jose, Erbium-doped phospho-tellurite glasses for 15 μm optical amplifiers. Opt. Commun. 265(2), 588–593 (2006)
- 8.
R. El-Mallawany, A. Abousehly, E. Yousef, Elastic moduli of tricomponent tellurite glasses TeO2-V2O5-Ag2O. J. of Mater. Sci. Lett. 19(5), 409–411 (2000)
- 9.
M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.148
- 10.
S. Chandra, Superionic Solids: Principles and Applications (North-Holland, Amsterdam, 1981), p. 56
- 11.
K. Pach, E. Golis, M. Sitarz, J. Filipecki, Structural studies of tellurite glasses doped with erbium ions. J. of Mol. Struct. 1164, 328–333 (2018)
- 12.
D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. of Non-Cryst. Solids. 354(52–54), 5573–5579 (2008)
- 13.
K. Keshavamurthy, B. Eraiah, Transport properties of lithium ions doped vanado-bismuth-tellurite glasses. AIP Conf. Proceed. (2016). https://doi.org/10.1063/1.4948023
- 14.
A. Moguš-Milanković, A. Šantić, V. Ličina, D.E. Day, Dielectric behaviour and impedance spectroscopy of bismuth iron phosphate glasses. J. of Non-Cryst. Solids. 351(40–42), 3235–3245 (2005)
- 15.
L. Bih, M. El Omari, J.M. Réau, M. Haddad, D. Boudlich, A. Yacoubi, A. Nadiri, Electronic and ionic conductivity of glasses inside the Li2O–MoO3–P2O5 system. Solid State Ion. 132(1–2), 71–85 (2000)
- 16.
J.E. Garbarczyk, P. Machowski, M. Wasiucionek, W. Jakubowski, Electrical properties of AgI–Ag2O–V2O5–P2O5 glasses. Solid State Ion. 157(1–4), 269–273 (2003)
- 17.
G.D.L.K. Jayasinghe, M.A.K.L. Dissanayake, P.W.S.K. Bandaranayake, J.L. Souquet, D. Foscallo, Electronic to ionic conductivity of glasses in the Li2O–V2O5–TeO2 system. Solid State Ion. 121(1–4), 19–23 (1999)
- 18.
J.E. Garbarczyk, M. Wasiucionek, P. Jóźwiak, L. Tykarski, J.L. Nowiński, Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ion. 154, 367–373 (2002)
- 19.
D. Dutta, A. Ghosh, Dynamics of Ag+ ions in binary tellurite glasses. Phys. Rev. B 72(2), 024201 (2005)
- 20.
M.L. Ferreira Nascimento, Determination of mobility and charge carriers concentration from ionic conductivity in sodium germanate glasses above and below. Int Sch. Res. Not (2013). https://doi.org/10.1155/2013/240571
- 21.
M. Sayer, A. Mansingh, Transport properties of semiconducting phosphate glasses. Phys. Rev. B 6(12), 4629 (1972)
- 22.
N.F. Mott, Conduction in glasses containing transition metal ions. J. of Non-Cryst. Solids 1(1), 1–17 (1968)
- 23.
I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. in Phys. 18(71), 41–102 (1969)
- 24.
A.E. Owen, The electrical properties of glasses. J. of Non-Cryst. Solids 25(1–3), 370–423 (1977)
- 25.
A.M. Ibrahim, Y.H. Elbashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, Mixed ionic–polaronic conduction in copper sodium phosphate glasses containing aluminium oxide. J Microwave Power Electromagnet Energy 51(1), 71–89 (2017)
- 26.
S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J Alloys Compd. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211
- 27.
S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO· Bi2O3· B2O3 (M= Ba, Sr) glasses. Mater. Chem. and Phys. 90(1), 83–89 (2005)
- 28.
D.K. Durga, N. Veeraiah, Dielectric dispersion in ZnF2-Bi2O3-TeO2 glass system. J. of Mater. Sci. 36(23), 5625–5632 (2001)
- 29.
K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Dielectric dispersion in lithium–bismuth-borate glasses. Curr. Appl. Phys. 11(1), 55–60 (2011)
- 30.
J.E. Garbarczyk, M. Wasiucionek, P. Machowski, W. Jakubowski, Transition from ionic to electronic conduction in silver–vanadate–phosphate glasses. Solid State Ion. 119(1–4), 9–14 (1999)
- 31.
R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, R.H.Y. Subban, The anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20–x) MnO2–80TeO2 glass system. Mater. Express 6(2), 149–160 (2016)
- 32.
M. Shapaan, F.M. Ebrahim, Structural and electric–dielectric properties of B2O3–Bi2O3–Fe2O3 oxide glasses. Phys. B: Condens. Matter. 405(16), 3217–3222 (2010)
- 33.
R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, AC conductivity and dielectric behaviour in mixed electronic-ionic 30Li2O–4MoO3–(66–x) TeO2–xV2O5 glass system. Ion. 23(6), 1423–1437 (2017)
- 34.
J. Lu, K.S. Moon, J. Xu, C.P. Wong, Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. of Mater. Chem. 16(16), 1543–1548 (2006)
- 35.
L. Murawski, R.J. Barczyński, Electronic and ionic relaxations in oxide glasses. Solid State Ion. 176(25–28), 2145–2151 (2005)
- 36.
S. Bahniwal, A. Sharma, S. Aggarwal, S.K. Deshpande, Dielectric spectroscopy of silver nanoparticle embedded soda glass. J. of Appl. Phys. 104(6), 064318 (2008)
- 37.
G.V. Rao, H.D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass. J. of Non-Cryst. solids 402, 204–209 (2014)
- 38.
A.A. Ali, M.H. Shaaban, Electrical properties and scaling behaviour of Sm3+ doped CaF2-bismuth borate glasses. Bull. of Mater. Sci. 34(3), 491–498 (2011)
- 39.
N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)
- 40.
M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2–TiO2–Li2B4O7 glass system. J. Alloys Compd. 710, 312–322 (2017)
- 41.
L. Wu, Y. Zhou, Z. Zhou, P. Cheng, B. Huang, F. Yang, J. Li, Effect of silver nanoparticles on the 1.53 μm fluorescence in Er3+/Yb3+ codoped tellurite glasses. J. Opt. Mat. 57, 185–192 (2016)
- 42.
M.R. Dousti, M.R. Sahar, R.J. Amjad, S.K. Ghoshal, A. Awang, Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium zinc tellurite glass. J. Lumin. 143, 368–373 (2013)
- 43.
T. Sankarappa, M.P. Kumar, G.B. Devidas, N. Nagaraja, R. Ramakrishnareddy, AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses. J. of Mol. Struct. 889(1–3), 308–315 (2008)
- 44.
A. Azuraida, M.K. Halimah, A.A. Sidek, C.A.C. Azurahanim, S.M. Iskandar, M. Ishak, A. Nurazlin, Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Lett. 12(10), 497–503 (2015)
- 45.
M.S. Sutrisno, R. Hisam, N.M. Samsudin, Anomalous Behavior of Optical Properties in Mixed Ionic-Electronic. Int. J. Electroactive Mater. 7(2019), 53–66 (2019)
- 46.
M.H. Mahmoud, T.A. Taha, FTIR and Mössbauer Spectroscopy Investigations of Ag/FexAl2−xO3 Nanocomposites. J. of Electron. Mater. 48(11), 7396–7403 (2019)
- 47.
A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2020)
- 48.
T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive Study of Structural, Magnetic and Dielectric Properties of Borate/Fe3O4 Glass Nanocomposites. J. of Electron. Mater. 49(2), 1161–1166 (2020)
- 49.
T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128162
- 50.
T.A. Taha, M.M. El-Molla, Green simple preparation of LiNiO2 nanopowder for lithium ion battery. J. Mater. Res. Technol. 9(4), 7955–7960 (2020)
- 51.
D. Rajesh, A. Balakrishna, Y.C. Ratnakaram, Luminescence, structural and dielectric properties of Sm3+ impurities in strontium lithium bismuth borate glasses. Opt. Mater. 35(2), 108–116 (2012)
- 52.
H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Mater. Res. and Technol. 9(4), 9189–9194 (2020)
- 53.
T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian Ceram. Soc. (2020). https://doi.org/10.1080/21870764.2020.1812839
- 54.
T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni05Zn05Fe2O4. Appl. Phys. A 126(9), 1–10 (2020)
- 55.
T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. and Phys. 255, 123574 (2020)
- 56.
A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. Silicon 12(1), 13–20 (2020)
- 57.
A.O. Hulpus, J.H. Monteiro, S.K. Mendiratta, M.F. Carrasco, I. Ardelean, Electrical impedance spectroscopy and ageing behaviour of glasses containing silver oxide and metallic silver nanoparticles. J. of Non-Cryst. Solids 352(9–20), 1495–1500 (2006)
- 58.
P. Jozwiak, J.E. Garbarczyk, Mixed electronic–ionic conductivity in the glasses of the Li2O–V2O5–P2O5 system. Solid State Ion. 176(25–28), 2163–2166 (2005)
- 59.
Jonscher, A. K. (1992). The Universal Dielectric response and its Physical Significance. IEEE Transactions on Electrical Insulation 2(June).
- 60.
S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)
- 61.
S. Dhankhar, R.S. Kundu, R. Parmar, S. Murugavel, R. Punia, N. Kishore, Electronic transport and relaxation studies in bismuth modified zinc boro-tellurite glasses. Solid State Sci. 48, 230–236 (2015)
- 62.
R.A. Montani, A. Lorente, M.A. Vincenzo, Effect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses. Solid State Ion. 130(1–2), 91–95 (2000)
- 63.
N.A. Wójcik, M. Prześniak-Welenc, P. Kupracz, J. Karczewski, M. Gazda, R.J. Barczyński, Mixed ionic–electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2VO5. Phys. Status Solidi (b) 254(9), 1700093 (2017)
- 64.
R.M. Mahani, S.Y. Marzouk, AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses. J. of Alloy. and Compd. 579, 394–400 (2013)
- 65.
R.B. Rao, N.O. Gopal, N. Veeraiah, Studies on the influence of V2O5 on dielectric relaxation and ac conduction phenomena of Li2O–MgO–B2O3 glass system. J. Alloy. and Compd. 368(1–2), 25–37 (2004)
- 66.
S. Bhattacharya, A. Acharya (2020), Dielectric properties of oxide glass composites. In Metal Oxide Glass Nanocomposites. (Elsevier) pp. 233–246
- 67.
P.R. Rejikumar, P.V. Jyothy, S. Mathew, V. Thomas, N.V. Unnikrishnan, Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass. Phys. B: Condens. Matter. 405(6), 1513–1517 (2010)
- 68.
G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)
- 69.
P.S.G. Rao, R. Siripuram, S. Sripada, Impedance analysis of TeO2-SeO2-Li2O nano glass system. Results Phys. 13, 102133 (2019)
- 70.
S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloy. Compd. 597, 110–118 (2014)
- 71.
E. Mansour, G.M. El-Damrawi, Y.M. Moustafa, S. Abd El-Maksoud, H. Doweidar, Polaronic conduction in barium borate glasses containing iron oxide. Phys. B: Condens. Matter. 293(3–4), 268–275 (2001)
- 72.
S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLiMo2O8 electroceramics. Phys. B: Condens. Matter. 355(1–4), 188–201 (2005)
- 73.
M.M. Elkholy, L.S. El-Deen, The dielectric properties of TeO2–P2O5 glasses. Mater. Chem. and Phys. 65(2), 192–196 (2000)
- 74.
A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12(12), 2148–2154 (2010)
- 75.
S.J. Japari, A.K. Yahya, R. Hisam, Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20–x) K2O–30V2O5-50TeO2 glasses. Results in Phys. 16, 102905 (2020)
- 76.
M. Aslam, I.S. Mulla, K. Vijayamohanan, Insulator–metal transition in Coulomb blockade nanostructures. Appl. Phys. Lett. 79(5), 689–691 (2001)
- 77.
V.D. Okunev, R. Szymczak, M. Baran, H. Szymczak, P. Gierłowski, Effect of Coulomb blockade on the low-and high-temperature resistance of La1− xMxMnO3 (M= Sr, Ca) films. Phys. Rev. B 74(1), 014404 (2006)
- 78.
X. Man, F. Jun-qiang, C. Xiao-long, Conductive property of metal nanoparticle/polymer composite dielectrics. In 2008 Int. Symposium on Electr. Insulating Mater. (ISEIM 2008) (IEEE, 2008) pp. 83-86
- 79.
R. Vaish, K.B.R. Varma, Dielectric properties of Li2O–3B2O3 glasses. J. Appl. Phys. 106(6), 064106 (2009)
- 80.
S.K. Barik, R.N.P. Choudhary, A.K. Singh, Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv. Mat. Lett 2(6), 419–424 (2011)
- 81.
S. Suresh, M. Prasad, V.C. Mouli, AC conductivity and impedance measurements in alkali boro-tellurite glasses. J. Non-Cryst. Solids 356(31–32), 1599–1603 (2010)
- 82.
V. Thakur, A. Singh, R. Punia, S. Dahiya, L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass-ceramics. J. Alloy. Compd. 696, 529–537 (2017)
- 83.
A. Yadav, S. Khasa, A. Hooda, M.S. Dahiya, A. Agarwal, P. Chand, EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions. Spectrochimica Acta Part A: Mol. and Biomol. Spectrosc. 157, 129–137 (2016)
Acknowledgements
The authors express gratitude to the Research Management Centre (RMC), Universiti Teknologi MARA for assistance throughout the research. This study was financially supported by the Ministry of Education Malaysia under the Fundamental Research Grant Scheme (FRGS), 600-IRMI/FRGS 5/3 (122/2019).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sutrisno, M.S., Samsudin, N.M., Sazali, E.S. et al. AC conductivity and dielectric properties of 98[20Li2O-xBi2O3-(80-x)TeO2]-2Ag mixed ionic-electronic glasses. J Mater Sci: Mater Electron 32, 5138–5155 (2021). https://doi.org/10.1007/s10854-021-05246-5
Received:
Accepted:
Published:
Issue Date: