Synthesis, structural and electrical conduction of some dual doped semiconductor oxides nanoparticles for photocatalytic degradation of Victoria blue-B and Brilliant yellow under solar light irradiation

Abstract

In this study, the nanoparticles of undoped and dual (codoped) doped semiconductor oxides such as Bi2O3, Bi1.9Sm0.038Cu0.062O3; Co3O4, Co2.902Mn0.049Dy0.049O4; V2O5, V1.91Ni0.043Gd0.047O5; Cu2O, Cu1.927Mn0.036Yb0.037O; CeO2, and Ce0.938Ni0.028Zn0.034O2 were synthesized by tartarate and hydroxide coprecipitation method. The composition, structure, morphology, surface and optical properties of undoped and dual doped semiconductor oxides have been investigated by X-ray fluorescence spectroscopy (XRF), Energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), Scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), BET surface area analyzer and UV–Vis diffuse reflectance absorption spectra (UV–vis DRS). The XRD and SEM studies showcase monodispersion of undoped and dual (co-doped) doped semiconductor oxides in the average grain size range of 36–65 nm with a monoclinic structure for Bi2O3 and its doped oxide, cubic structure for Co3O4, Cu2O, CeO2 and their respective doped oxides and orthorhombic structure for V2O5 and its doped oxide. Rietveld refinements of XRD pattern and XPS results confirmed that the dual dopants exist in + 2 or + 3 states and successfully incorporated into the semiconductor oxide matrix. BET surface areas for these oxides were found in the range of 25.3–65.4 m2g−1. The band gap energy (Eg) of undoped and doped semiconductor had a direct transition to fall between 2.10 and 3.12 eV as estimated from the optical absorption data (UV–vis DRS) and found absorption band edge (λg) in the visible-light range. The d.c. electrical conductivity and thermo-electric power measurements for all compounds showed n-type semiconductor except undoped and doped Cu2O and Co3O4 compounds showed p-type semiconductivity. The photo catalytic activity of undoped and dual doped semiconductor oxides in the Victoria blue-B (VB) and Brilliant yellow (BY) solutions were studied in sunlight irradiation. A set of optimized conditions such as the amount of these oxides, initial dye concentration, pH, contact time and dopants on the photodegradation of these dyes were investigated in detail. The dual doped semiconductor oxides showed a noteworthy enhancement in the degradation of VB and BY dyes under exposure to sunlight. The enhanced photocatalytic activity can be attributed to the incorporation of multivalent dopants in semiconductor oxide matrix promoted the separation of photogenerated charges, inhibited the recombination of photogenerated carriers, and thus prolonged the charges lifetime to participate in the photocatalytic reaction. The kinetic measurements indicate the dominance of pseudo-first order rate constant for Victoria blue-B (VB) were higher than that of Brilliant yellow (BY) in all cases, indicating that the photocatalytic degradation of VB was easier and more rapid than BY dye during the adsorption and also ascribed to different molecular structure to these dyes. A tentative reaction mechanism has also been proposed for this photocatalytic reaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    CAS  Article  Google Scholar 

  2. 2.

    Z.L. Xiao, C.Y. Han, W.K. Kwork, H.H. Wang, U. Welp, J. Wang, G.W. Crabtree, J. Am. Chem. Soc. 126, 2316 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    J.B. Goodenough, Magnetism and The Chemical Bond (Wiley, New York, 1966).

    Google Scholar 

  4. 4.

    S. Yabe, T. Sata, J. Solid State Chem. 171, 7 (2003)

    CAS  Article  Google Scholar 

  5. 5.

    S.D. Park, J.M. Votis, R.J. Gorte, Nature 404, 265 (2000)

    CAS  Article  Google Scholar 

  6. 6.

    N. Izu, T. Itoh, M. Nishibori, I. Matsubari, W. Shin, Sens. Activat. B: Chem. 171–172, 350 (2012)

    Article  CAS  Google Scholar 

  7. 7.

    H. Yu Chem, Commun. 48, 7386 (2012)

    Google Scholar 

  8. 8.

    R.K. Jha, R. Pasricha, V. Ravi, Ceram. Int. 31, 495 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    L. Yin, D. Dai, J. Niu, Mater. Lett. 91, 372 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    S. Maensiri, C. Masingboon, P. Lookul, W. Joreconboon, V. Pramark, P.L. Anderson, S. Seraphi, Cryst. Growth Des. 7, 950 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    D.P. Dutta, M. Ray, A.K. Tyagi, Dalton Trans. 41, 10238 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    T. Ahmad, I.H. Lone, S.G. Anasari, Mater. Res. 126, 331 (2017)

    CAS  Google Scholar 

  13. 13.

    X. He, W. Deng, F. Zheng, L. Fang, M. Shen, Mater. Chem. Phys. 123, 284 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    B. Ohtani, J. Photochem. Photobiol. C 11, 157 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    M.K. Nowatny, L.R. Sheppard, T. Bak, J. Newotny, J. Phys. Chem. 112, 5275 (2008)

    Google Scholar 

  16. 16.

    E. Casbeer, K.V. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    L. Cheng, Y. Kang, J. Alloys Compd. 585, 85 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    X. Lu, T. Zhai, H. Cui, H. Shi, S. Xie, Y. Huang, C. Liang, Y. Tong, J. Mater. Chem. 21, 5569 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    H. Li, G.T. Fci, M. Fang, P. Cui, X. Guo, P. Yan, L.D. Zhang, Appl. Surf. Sci. 257, 6527 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    H.L. Fci, H.J. Zhou, J.G. Wang, P.C. Sun, D.T. Ding, T.H. Chen, Solid State Sci. 10, 1276 (2008)

    Article  CAS  Google Scholar 

  21. 21.

    X. Gao, X.X. Liu, X.J. Wang, Z.M. Zhu, J. Mater. Eng. 44, 120 (2016)

    CAS  Google Scholar 

  22. 22.

    D.D.M. Prabaharan, K. Sadaiyandi, M. Mahendra, S. Sagaclem, Appl. Phys. A 124(2), 86 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    S. Labib, J. Saudi Chem. Soc. 21(6), 664 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    G.R. Navyashree, K. Hareesh, D.V. Sunitha, H. Nagabhushana, S. Nagaraju, Mater. Res. Express 5(9), 095007 (2018)

    Article  CAS  Google Scholar 

  25. 25.

    T.P. Jaya, P. Jayaram, T. Ramachandran, P. Hajira, C.N. Anumol, Pradyumnan Phys. B 407, 1214 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    L. Yue, X.M. Zhang, J. Alloys Compd. 475, 702 (2009)

    CAS  Article  Google Scholar 

  27. 27.

    S. Tiwari, N. Balasubramanian, S. Biring, S. Sen, I.O.P. Conf, Series Mater. Sci. Eng. 390, 012001 (2018)

    Google Scholar 

  28. 28.

    G. Hitkari, S. Sandhya, P. Gajanan, M.K. Shrivash, D. Kumar, J. Mater. Sci. Eng. 7(4), 419 (2018)

    Google Scholar 

  29. 29.

    G. Lin, D.Z. Tan, F.F. Luo, D.P. Chen, Q.Z. Zhao, J.R. Qiu, J. Alloy Compds. 507, 43 (2010)

    Article  CAS  Google Scholar 

  30. 30.

    Q. Lv, Y. Li, S. Shi, J. Zhao, Y.J.H. Wang, J. Chen, V. Zhao, L. Liu, L. Li, IOP Conf. Series Earth Environ. Sci. 189, 32056 (2018)

    Google Scholar 

  31. 31.

    J. Wang, W. Yu, S. Xu, S. Dai, J. Wang, C. Wang, W. Zeng, P. Cao, Ceram. Int. 40, 317 (2014)

    Article  CAS  Google Scholar 

  32. 32.

    R. Suresh, K. Giribabu, R. Manigandan, S. Munuswmy, S. Praveenkumar, S. Muthamizh, A. Stephen, V. Narayanan, J. Alloys Compds. 598, 151 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    P. Malathy, K. Vignesh, M. Rajarajan, A. Sugantle, Ceram. Int. 40, 101 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    S.A. Ong, O.M. Min, L.N. Ho, Y.S. Wang, Water Air Soil Pollut. 223, 5483 (2012)

    CAS  Article  Google Scholar 

  35. 35.

    A.R. Khataee, M.N. Pons, O. Zahraa, J. Hazadous Mater. 168(1), 451 (2009)

    CAS  Article  Google Scholar 

  36. 36.

    P. Bansal, D. Singh, D. Su, Separ. Purif. Technd. 72(3), 357 (2010)

    CAS  Article  Google Scholar 

  37. 37.

    M.A. Majeedkhan, W. Khan, A. Ahamed, A.N. Alk, Sci. Rep. 7, 12560 (2017)

    Article  CAS  Google Scholar 

  38. 38.

    K. Soutsas, V. Karayannis, I. Poulios, A. Riya, K. Ntampegliotis, X. Spilliotis, G. Papapolymera, Desalination 250(1), 345 (2010)

    CAS  Article  Google Scholar 

  39. 39.

    G. Shao, J. Physical. Chem. C 112(47): 18677 (2008) and 113(6): 6800 (2009)

  40. 40.

    K. Rekha, M. Nirmala, M.G. Nair, A. Anukulkarni, Phys. B 405, 347 (2010)

    Article  CAS  Google Scholar 

  41. 41.

    M. Magenson, N.M. Sammes, G.A. Tompsett, Solid State Ionic 129, 63 (2009)

    Article  Google Scholar 

  42. 42.

    D.G. Huanga, S.J. Liao, J.M. Liu, Z. Danga, L. Petrik, J. Photochem. Photobiol. A: Chem. 184, 282 (2006)

    Article  CAS  Google Scholar 

  43. 43.

    M. Pelaez, A.A. De La Cruz, E. Stathatos, P. Falaras, D.D. Dionysiou, Catal. Today 144, 19 (2004)

    Article  CAS  Google Scholar 

  44. 44.

    Z. Zhao, J. Liu, M. Qin, K. Kou, G. Wu, H. Wu, J. Nanosci. Nano Tech. 20, 3140 (2020)

    CAS  Article  Google Scholar 

  45. 45.

    S. Tiwarin, N. Balasubrananjan, S. Biring, S. Sen, Iop. Conf. Series 390, 12009 (2018)

    Article  Google Scholar 

  46. 46.

    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn. (Wiley Interscience, New York, 1970), p. 244

    Google Scholar 

  47. 47.

    R.L. Schmid, J. Felsche, Thermochim. Acta 59, 105 (1982)

    CAS  Article  Google Scholar 

  48. 48.

    S. Krishner, K. Kiasling, J. Am. Chem. Soc. 82, 4174 (1960)

    Article  Google Scholar 

  49. 49.

    J.R. Allen, N.D. Baird, A.L. Kassy, J. Therm. Anal. 16, 79 (1979)

    Article  Google Scholar 

  50. 50.

    JCPDS No. 27–0053.

  51. 51.

    JCPDS No. 81–0792.

  52. 52.

    JCPDS No. 73–1701.

  53. 53.

    JCPDS No. 78–2076.

  54. 54.

    JCPDS No. 09–0387

  55. 55.

    H. Rietveld, J. Appl. Crystallogr. 2, 69 (1969)

    Article  Google Scholar 

  56. 56.

    A.C. Lorson, R.B. Drecle, Generalized Structure System (GSAS) LAUR 86–748 Loss Alamos, New Mexico Alamos National Laboratory (1994).

  57. 57.

    B. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    CAS  Article  Google Scholar 

  58. 58.

    A.R. West, Solid State Chemistry And Its Applications (Wiley, New York, 1947), p. 172

    Google Scholar 

  59. 59.

    A.K. Nikumbh, A.V. Nagawade, G.S. Gugale, M.G. Chaskar, P.P. Bakare, J. Mater, Sci 17, 637 (2002)

    Google Scholar 

  60. 60.

    T. Abbas, M.U. Islam, M.A. Chaudhary, Mod. Phys. Lett. B 9(22), 1419 (1995)

    CAS  Article  Google Scholar 

  61. 61.

    Y.Y. Kim, D.H. Lee, J. Solid State Chem. 112, 376 (1994)

    Article  Google Scholar 

  62. 62.

    Y. Li, T. Sasaki, Y. Shimizu, N. Kashizaki, J. Am. Chem. Soc. 130, 14755 (2008)

    CAS  Article  Google Scholar 

  63. 63.

    Y.W. Zhang, R. Si, C.S. Liao, C.H. Yan, J. Phys. Chem. B 107, 10159 (2003)

    CAS  Article  Google Scholar 

  64. 64.

    J.L. Gautier, E. Rios, M. Gracia, J.R. Gancedo, Thin Solid Films 311:51 (1997); (b) J. Magn. Mater. 323:133 (2011)

  65. 65.

    T. Ghodselahi, M.A. Vesaghi, A. Shefiekhani, A. Baghizadah, M. Lamoii, Appl. Surf. Sci. 255, 2730 (2008)

    CAS  Article  Google Scholar 

  66. 66.

    S. Chakraborty, M.K. Bera, G.K. Dalapati, D. Paramanik, S. Verma, P.K. Bose, S. Battacharya, C.K. Maiti, Semicond. Sci. Technol. 21, 467 (2006)

    CAS  Article  Google Scholar 

  67. 67.

    D. Huiling, S. Xiang, Y. Cui, Solid State Commun. 159, 1213 (2010)

    Google Scholar 

  68. 68.

    B.V. Bhise, S.D. Lorke, S.A. Patil, Phys. Stat. Solidi A 157, 411 (1996)

    CAS  Article  Google Scholar 

  69. 69.

    M. Feng, L.B. Luo, B. Nite, S.H. Yu, Adv. Funct. Mater. 23, 5116 (2013)

    CAS  Article  Google Scholar 

  70. 70.

    C. Buonp, F. Schipani, M.A. Porice, C.M. Aldao, Phys. Status Solidi (c) 14(5), 1700069 (2017)

    Google Scholar 

  71. 71.

    R.T. Tung, J.P. Sullivan, F. Schrey, Mater. Sci. Eng. 8(14), 266 (1992)

    Article  Google Scholar 

  72. 72.

    P.E. Cimilli, M. Saglam, H. Efeoglu, A. Turilt, Phys. B 404, 1558 (2009)

    CAS  Article  Google Scholar 

  73. 73.

    J. Tang, Z. Zou, J. Ye, Chem. Mater. 16, 1644 (2004)

    CAS  Article  Google Scholar 

  74. 74.

    N. Mukherjee, B. Sho, S.K. Maji, U. Madhu, S.K. Bhar, B.C.M. Tra, G.G. Khan, A. Mondal, Mater. Lett. 65, 3248 (2011)

    CAS  Article  Google Scholar 

  75. 75.

    D. Chandram, L.S. Nair, S. Balachandran, K. RajendraBabu, M. Deepa, Bull. Mater. Sci. 39, 27 (2016)

    Article  CAS  Google Scholar 

  76. 76.

    P. Patsalas, S. Logothetidis, L. Sygelloou, S. Kennou, Phys. Rev. B 68, 3510 (2003)

    Article  CAS  Google Scholar 

  77. 77.

    Y. Ling, W. Jiang, X. Wu, X. Bai, J. Nanosci. Nanotech. 9, 714 (2000)

    Article  CAS  Google Scholar 

  78. 78.

    J. Tauc, Mater. Res. Bull. 3(1), 37 (1968)

    CAS  Article  Google Scholar 

  79. 79.

    J. AlmeidaDias, J. ArianeOliveira, C.G. Renda, M.R. Morelli, Mater. Res. 21(5), e20180118 (2018)

    Google Scholar 

  80. 80.

    I. Gringerg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, Nature 503, 509 (2013)

    Article  CAS  Google Scholar 

  81. 81.

    P. Kubelka, F. Munk, Z. Tech, Physics 12, 593 (1931)

    Google Scholar 

  82. 82.

    C. Sandovel, D.K. Amold, J. Optical Soc. Am. A 31(3), 1628 (2014)

    Google Scholar 

  83. 83.

    D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, E. Iglesia, J. Phy. Chem. B 103, 630 (1999)

    CAS  Article  Google Scholar 

  84. 84.

    A. Escobed Morales, E. Sanchez Mora, U. Pal, Rev. Maxicana De Fisica 853(5), 18 (2007)

    Google Scholar 

  85. 85.

    W. Macryk, J. Phys. Chem. Lett. 9, 6814 (2018)

    Article  CAS  Google Scholar 

  86. 86.

    M. Itoh, N. Fujita, Y. Inabe, J. Phys. Soc. Jpn. 75, 084705 (2006)

    Article  CAS  Google Scholar 

  87. 87.

    O.Y. Khyzhun, T. Strunskus, S. Cramm, Y.M. Solonin, J. Alloys Compd. 389, 14 (2005)

    CAS  Article  Google Scholar 

  88. 88.

    R.L. Perales, J.R. Fuertes, D. Errandonea, D.M. Garcia, A. Segura, Europhys. Lett. 83, 37002 (2008)

    Article  CAS  Google Scholar 

  89. 89.

    R.D. Shannon, Acta Crystallogr. 389, 14 (2005)

    Google Scholar 

  90. 90.

    D. Errandonea, R. Bochler, M. Ross, Phys. Rev. B 65, 012108 (2002)

    Article  CAS  Google Scholar 

  91. 91.

    H.L. Skriver, Phys. Rev. B 31, 1909 (1985)

    CAS  Article  Google Scholar 

  92. 92.

    K.R. Jakkindi, S. Basavaraju, D.K. Valluri, Chem. Cat Chem. 14, 492 (2009)

    Google Scholar 

  93. 93.

    J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T. Rajendrakumar, Mater. Sci. Semicond. Processing 26, 218 (2014)

    CAS  Article  Google Scholar 

  94. 94.

    J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, E. Hu, K. Lin, Curr. Appl. Phys. 12, 998 (2012)

    Article  Google Scholar 

  95. 95.

    A.H. Houas, M. Lachheb, E. Ksibi, C. Elaloui, C. Guillard, J.M. Hermann, Appl. Catal. B: Environ. 31, 145 (2001)

    CAS  Article  Google Scholar 

  96. 96.

    G. Qu, X. Zhang, H. Liu, J. Mol. Cat. A: Chemical 259(1–2), 238 (2006)

    Google Scholar 

  97. 97.

    S.A. Ong, K. Uchiyama, D. Inadama, Y. Ishida, K. Yamagiwa, Bioresource. Technol. 101(23), 9049 (2010)

    CAS  Article  Google Scholar 

  98. 98.

    T. Wu, T. Lin, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Techno 33, 1379 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to Head, Department of Chemistry and Department of Geology, Savitribai Phule Pune University for facilities given for part of the work. They also thank the Dr.S.S.Deo from National Chemical Laboratory (NCL), Pune-411008, India for X-ray photoelectron spectroscopy that were provided for part of this work. The authors are greatly thankful to Dr.Sunil Patange, Department of Physics, Shrikrishna Mahavidyalaya Gunjoti, Omerga (Osmanabad), Maharashtra provide for Rietveld refinement of XRD data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. J. Karale-Unde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karale-Unde, N.J., Nikumbh, A.K., Khanvilkar, M.B. et al. Synthesis, structural and electrical conduction of some dual doped semiconductor oxides nanoparticles for photocatalytic degradation of Victoria blue-B and Brilliant yellow under solar light irradiation. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05237-6

Download citation