Spectroscopic and density functional theory (DFT) approach of zwitterionic 4-aminobenzenesulfonic acid for optoelectronic applications

Abstract

In this present study, a coupled experimental and density functional theory (DFT) studies of organic nonlinear optical (NLO) material, 4-aminobenzenesulfonic acid (4AB), is reported. By slow evaporation method the optical quality, single crystals of 4AB were developed under aqueous medium condition. Single-crystal XRD analysis reveals the crystalline nature of 4AB crystal; the 4AB crystal structure is in the orthorhombic system with noncentrosymmetric (NCS), Pca21, space group. The morphology of developed crystal has been indexed and showed a major facet of the crystal as (002). The molecular construction of 4AB has been well established using 13C and 1H NMR spectroscopic studies. FTIR and FT-RAMAN were found out to be the corresponding vibrational modes of 4AB. Linear optical studies of grown crystal allow near-UV cut-off wavelength range at 261 nm with good optical transparency in the visible and near-IR region and exhibited ultraviolet wavelength emission. Thermal analysis revealed a high thermal stability value of 288 °C for 4AB crystal. Moreover, dielectric and photoconductivity investigations were accomplished efficiently and revealed low dielectric constant and positive photoconducting nature, respectively. The molecular structure of 4AB was optimized at the B3LYP/cc-pVTZ basis set using density functional theory (DFT). The intermolecular hydrogen bond (N1–H1···O1) formation was confirmed by the Mulliken atomic charge distribution analysis and molecular electrostatic potential map analysis. Frontier molecular orbitals (FMOs) evidenced the lower energy gap for the 4AB molecule. Besides NLO properties, the dipole moment (µ0), polarizability (α) and first-order hyperpolarizability (β) were measured for the optimized 4AB molecule.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    C.R. ThayaKumari, M. Nageshwari, S. Sudha, M.L. Caroline, J. Chin. Phys. 56, 2673–2683 (2018)

    Article  Google Scholar 

  2. 2.

    S. Jeeva, S. Muthu, S. Tamilselvan, T. LydiaCaroline, P. Purushothaman, S. Sevvanthi, G. Vinitha, G. Mani, J. Chin Phys. 56, 1449–1466 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    E. Ishow, C. Bellaïche, L. Bouteiller, K. Nakatani, J.A. Delaire, J. Am. Chem. Soc. 125, 15744–15745 (2016)

    Article  Google Scholar 

  4. 4.

    D.J. Williams, Angew. Chem. Int. Ed. Engl. 23, 690–703 (1984)

    Article  Google Scholar 

  5. 5.

    B.S. Arun Saai, S. Alen, K.L. Joy, D. Sajan, C. James, J. Mater. Sci.: Mater. Electron. 29, 17887–17902 (2018)

    Google Scholar 

  6. 6.

    R. Anbarasan, M. Anna Lakshmi, J. Kalyana Sundar, J. Mater. Sci.: Mater. Electron. 29, 14827–14834 (2018)

    CAS  Google Scholar 

  7. 7.

    E. Ilango, M. Kothandaraman, V. Chithambaram, J. Mater. Sci.: Mater. Electron. 29, 9083–9089 (2018)

    CAS  Google Scholar 

  8. 8.

    M. Suresh, S.A. Bahadur, S. Athimoolam, J. Mater. Sci.: Mater. Electron. 27, 4578–4589 (2016)

    CAS  Google Scholar 

  9. 9.

    R.W. Munn, C.N. Ironside, Principles and Applications of Nonlinear Optical Materials (Springer, Dordrecht, 1993).

    Google Scholar 

  10. 10.

    B. Babu, J. Chandrasekaran, B. Mohanbabu, Y. Matsushita, M. Saravanakumar, RSC Adv. 6, 110884–110897 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    J.N. Low, C. Glidewell, Acta Crystallogr. Sect. C 58, 209–211 (2002)

    Article  Google Scholar 

  12. 12.

    R. Mythili, T. Kanagasekaran, R. Gopalakrishnan, Cryst. Res. Technol. 42, 791–799 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    L.J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–857 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    M.J. Frisch, G.W. Trucks, Gaussian, Inc., Wallingford CT (2004).

  15. 15.

    P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03W, Version 6.0, Gaussian, Inc., Wallingford, CT (2004).

  16. 16.

    R. I. Dennington, T. Keith, J. Millam, K. Eppinnett, W. Hovell, Gauss View, Version 3.09, Semichem, Inc. , Shawnee Mission, KS (2003).

  17. 17.

    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, New York, 2007).

    Google Scholar 

  18. 18.

    J. Tauc (F. Abeles ed. ), Optical Properties of Solids, North Holland (1972).

  19. 19.

    S.H. Lin, M.L. Hsieh, K.Y. Hsu, S. Lin, T. Yeh, L. Hu, C. Lin, H. Chang, J. Opt. Soc. Am. 16, 1112–1119 (1999)

    CAS  Article  Google Scholar 

  20. 20.

    S.K. Kushwaha, K.K. Maurya, N. Vijayan, G. Bhagavannarayana, CrystEngComm 13, 4866–4872 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    V. Adivarahan, A. Chitnis, J.P. Zhang, M. Shatalov, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, M.S. Shur, Appl. Phys. Lett. 79, 4240 (2001)

    CAS  Article  Google Scholar 

  22. 22.

    R. Thirumurugan, K. Anitha, J. Mol. Struct. 1146, 273–274 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19–32 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer (Version 3.0), University of Western Australia (2010).

  25. 25.

    R. Thirumurugan, K. Anitha, Mater. Res. Express. 4, 56202 (2017)

    Article  Google Scholar 

  26. 26.

    P. Gabbott, Principles and Applications of Thermal Analysis (Blackwell, Oxford, 2008).

    Google Scholar 

  27. 27.

    E. Selvakumar, G.A. Babu, P. Ramasamy, R. Rajnikant, T.U. Devi, R. Meenakshi, A. Chandramohan, Spectrochim. Acta Part A 125, 114–119 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    E. Selvakumar, G.A. Babu, P. Ramasamy, A. Chandramohan, Spectrochim. Acta Part A. 122, 436–440 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    V. Murugesan, M. Saravanabhavan, M. Sekar, J. Mol. Struct. 1084, 95–102 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    A. R. Von Hippel, Dielectric materials and applications, Artech House on Demand (1954).

  31. 31.

    A.R. Von Hippel, S. Morgan, J. Electrochem. Soc. 102, 68 (1955)

    Google Scholar 

  32. 32.

    S. Boomadevi, R. Dhanasekaran, J. Cryst. Growth 261, 70–76 (2004)

    CAS  Article  Google Scholar 

  33. 33.

    M. Shakir, S. Kushawaha, K. Maurya, S. Kumar, M. Wahab, G. Bhagavannarayana, J. Appl. Cryst. 43, 491–497 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    M. Shakir, S. Kushwaha, K. Maurya, R. Bhatt, Mater. Chem. Phys 120, 566–570 (2010)

    CAS  Article  Google Scholar 

  35. 35.

    P.W. Zukowski, S.B. Kantorow, D. Maczka, V.F. Stelmakh, Phys. Stat. Sol. A112, 695 (1989)

    Article  Google Scholar 

  36. 36.

    M. Suresh, S. Asath Bahadur, S. Athimoolam, Optik 126, 5452–5455 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    E. Vinoth, S. Vetrivel, S. Gopinath, J. Suresh, J. Taibah. Univ. Sci. 13, 979–992 (2019)

    Article  Google Scholar 

  38. 38.

    E. Vinoth, S. Vetrivel, S. Gopinath, R. Aruljothi, T. Suresh, R.U. Mullai, Mater. Sci. Energy Technol. 2, 234–245 (2019)

    Google Scholar 

  39. 39.

    C. Balarew, R. Duhlew, J. Solid Sate Chem. 55, 1–6 (1984)

    Article  Google Scholar 

  40. 40.

    B. Babu, J. Chandrasekaran, R. Thirumurugan, V. Jayaramakrishnan, K. Anitha, J. Mater. Sci: Mater Electron. 28, 1124–1135a (2017)

    CAS  Google Scholar 

  41. 41.

    V.N. Joshi, Photoconductivity (Marcel Dekker, New York, 1990).

    Google Scholar 

  42. 42.

    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)

    CAS  Article  Google Scholar 

  43. 43.

    R.S. Mulliken, J. Chem. Phys. 23, 1833–1840 (1955)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Arunachalam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information 1 (DOCX 224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ThayalaSanker, R., Arunpandian, M., VelayuthamPillai, M. et al. Spectroscopic and density functional theory (DFT) approach of zwitterionic 4-aminobenzenesulfonic acid for optoelectronic applications. J Mater Sci: Mater Electron 32, 4982–4997 (2021). https://doi.org/10.1007/s10854-021-05236-7

Download citation