Visible light sensitive hexagonal boron nitride (hBN) decorated Fe2O3 photocatalyst for the degradation of methylene blue

Abstract

The role of the carbon-based two-dimensional (2D) structures such as graphene or graphene oxide on the properties of metal oxide/2D composites materials are extensively studied for the environmental applications like photocatalysis. However, the metal oxide/inorganic 2D structure-based composites are less explored. In this regard, we have explored the α-Fe2O3/inorganic 2D hexagonal boron nitride (hBN) composite as an efficient visible light photocatalyst for the degradation of methylene blue (MB). A systematic investigation on the role of varying the weight percent of hBN on the photocatalytic efficiency for MB degradation under visible light was studied. The α-Fe2O3/(x) hBN (x = 1, 5, 10 wt%) composites were characterized by various analytical and spectroscopic techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The bandgap tuning with varying compositions of α-Fe2O3/(x) hBN (x = 1, 5, 10 wt%) were investigated by UV–vis diffuse reflectance spectroscopy (UV DRS) and the bandgap values were found to decrease with addition of hBN (1.56 eV for 5 wt%) compared to bare α-Fe2O3 (2.02 eV). The composite α-Fe2O3 with 5 wt% of hBN (FB2) showed an enhanced methylene blue (MB) degradation of ~ 91% with a high rate constant value of 5.03 × 10–4 s−1. This was ~ 3.3 times higher than the rate constant observed for the MB degradation using bare hematite. The material after photocatalysis process was retrieved by simple sedimentation process and reused for four cycles with no loss in degradation efficiency. The as-prepared composite material may have application in recycling and reuse of water in textile industries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M. Mostafa, Waste water treatment in textile industries—the concept and current removal technologies. J. Biodivers. Environ. Sci. 7, 501–525 (2015)

    Google Scholar 

  2. 2.

    C. Thamaraiselvan, M. Noel, Membrane processes for dye wastewater treatment: recent progress in fouling control. Crit. Rev. Environ. Sci. Technol. 45, 1007–1040 (2015). https://doi.org/10.1080/10643389.2014.900242

    CAS  Article  Google Scholar 

  3. 3.

    D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: a review. Crit. Rev. Environ. Sci. Technol. 47, 1836–1876 (2017). https://doi.org/10.1080/10643389.2017.1393263

    CAS  Article  Google Scholar 

  4. 4.

    R.V. Khandare, S.P. Govindwar, in Environmental Waste Management. Microbial degradation mechanism of textile dye and Its metabolic pathway for environmental safety (CRC, 2015). https://doi.org/10.1201/b19243-15

  5. 5.

    K. Blus, M. Gmurek, S. Ledakowicz, L. Bilinska, Brine recycling from industrial textile wastewater treated by ozone. By-products accumulation. Part 1: Multi recycling loop. Water 11(3), 460 (2019). https://doi.org/10.3390/w11030460

    CAS  Article  Google Scholar 

  6. 6.

    H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, particles size and calcination temperature. J. Hazard. Mater. 321, 629–638 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.056

    CAS  Article  Google Scholar 

  7. 7.

    M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018). https://doi.org/10.1016/j.jiec.2018.01.012

    CAS  Article  Google Scholar 

  8. 8.

    F. Kehinde, H.A. Aziz, Textile waste water and the advanced oxidative treatment process, an overview. Int. J. Innov. Res. Sci. Eng. Technol. 8(3), 15310–15317 (2014). https://doi.org/10.15680/IJIRSET.2014.0308034

    Article  Google Scholar 

  9. 9.

    M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite. J. Mol. Catal. A Chem. 418–419, 103–114 (2016). https://doi.org/10.1016/j.molcata.2016.03.034

    CAS  Article  Google Scholar 

  10. 10.

    K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    X. Yan, Y. Wu, D. Li, C. Luo, Y. Wang, J. Hu, L. Gang, L. Pengwei, J. Huabei, W. Zhang, Facile synthesis of ring-like α-Fe2O3 assembly composed of small hematite particles for highly efficient photocatalysis. J. Mater. Sci. Mater. Electron. 29(4), 2610–2617 (2017). https://doi.org/10.1007/s10854-017-8186-6

    CAS  Article  Google Scholar 

  12. 12.

    Y.H. Chen, C.C. Lin, Effect of nano-hematite morphology on photocatalytic activity. Phys. Chem. Miner. 41(10), 727–736 (2014). https://doi.org/10.1007/s00269-014-0686-9

    CAS  Article  Google Scholar 

  13. 13.

    Y. Huang, D. Ding, M. Zhu, W. Meng, Y. Huang, F. Geng, J. Li, J. Lin, C. Tang, Z. Lei, Z. Zhang, C. Zhi, Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci. Technol. Adv. Mater. 16, 014801 (2015). https://doi.org/10.1088/1468-6996/16/1/014801

    CAS  Article  Google Scholar 

  14. 14.

    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J. Mater. Sci. Mater. Electron. 29(10), 8142–8152 (2018). https://doi.org/10.1007/s10854-018-8819-4

    CAS  Article  Google Scholar 

  15. 15.

    Z. Landolsi, I.B. Assaker, R. Chtourou, S. Ammar, Photoelectrochemical impedance spectroscopy of electrodeposited hematite α-Fe2O3 thin films: effect of cycle numbers. J. Mater. Sci. Mater. Electron. 29(10), 8176–8187 (2018). https://doi.org/10.1007/s10854-018-8824-7

    CAS  Article  Google Scholar 

  16. 16.

    E. Alzahrani, Photodegradation of Eosin y using silver-doped magnetic nanoparticles. Int. J. Anal. Chem. 2015, 1–11 (2015). https://doi.org/10.1155/2015/797606

    CAS  Article  Google Scholar 

  17. 17.

    Z. Jiang, D. Jiang, W. Wei, Z. Yan, J. Xie, Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. J. Mater. Chem. A 3(46), 23607–23620 (2015). https://doi.org/10.1039/c5ta05425g

    CAS  Article  Google Scholar 

  18. 18.

    S. Asim, B. Asif, S.B. Khan, A.M. Asiri, Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 9, 1–9 (2014). https://doi.org/10.1186/1556-276X-9-510

    CAS  Article  Google Scholar 

  19. 19.

    W. Li, Q. Wang, L. Huang, Y. Li, Y. Xu, Y. Song, Q. Zhang, H. Xu, H. Li, Synthesis and characterization of BN/Bi2WO6 composite photocatalysts with enhanced visible-light photocatalytic activity. RSC Adv. 5, 88832–88840 (2015). https://doi.org/10.1039/c5ra15417k

    CAS  Article  Google Scholar 

  20. 20.

    H. Hassena, Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Mod. Chem. Appl. 4, 3–7 (2016). https://doi.org/10.4172/2329-6798.1000176

    CAS  Article  Google Scholar 

  21. 21.

    G.K. Pradhan, D. Padhi, K. Parida, Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces 5(18), 9101–9110 (2013). https://doi.org/10.1021/am402487h

    CAS  Article  Google Scholar 

  22. 22.

    R.C. Pawar, D. Choi, C.S. Lee, Reduced graphene oxide composites with MWCNTs and single crystalline hematite nanorhombohedra for applications in water purification. Int. J. Hydrog. Energy 40(1), 767–778 (2015). https://doi.org/10.1016/j.ijhydene.2014.08.084

    CAS  Article  Google Scholar 

  23. 23.

    A. Muthukrishnaraj, S. Vadivel, V.P. Kamalakannan, N. Balasubramanian, α-Fe2O3/reduced graphene oxide nanorod as efficient photocatalyst for methylene blue degradation. Mater. Res. Innov. 19(4), 258–264 (2014). https://doi.org/10.1179/1433075x14y.0000000251

    Article  Google Scholar 

  24. 24.

    R. Suresh, R. Udayabhaskar, C. Sandoval, E. Ramírez, R.V. Mangalaraja, H.D. Mansilla, C. David, Y. Jorge, Effect of reduced graphene oxide on the structural, optical, adsorption and photocatalytic properties of iron oxide nanoparticles. New J. Chem. 42(11), 8485–8493 (2018). https://doi.org/10.1039/c8nj00321a

    CAS  Article  Google Scholar 

  25. 25.

    N. Wang, G. Yang, H. Wang, R. Sun, C. Wong, Visible light-responsive photocatalytic activity of boron nitride incorporated composites. Front. Chem. 6, 1–12 (2018). https://doi.org/10.3389/fchem.2018.00440

    CAS  Article  Google Scholar 

  26. 26.

    H. Xu, L. Liu, Y. Song, L. Huang, Y. Li, Z. Chen, Q. Zhang, H. Li, BN nanosheets modified WO3 photocatalysts for enhancing photocatalytic properties under visible light irradiation. J. Alloys Compd. 660, 48–54 (2015). https://doi.org/10.1016/j.jallcom.2015.11.042

    CAS  Article  Google Scholar 

  27. 27.

    M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele, M. Bechelany, Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers. New J. Chem. 41(1), 81–89 (2017). https://doi.org/10.1039/c6nj03088b

    CAS  Article  Google Scholar 

  28. 28.

    B. Singh, K. Singh, M. Kumar, S. Thakur, A. Kumar, Insights of preferred growth, elemental and morphological properties of BN/SnO2 composite for photocatalytic applications towards organic pollutants. Chem. Phys. 531, 110659–110667 (2020). https://doi.org/10.1016/j.chemphys.2019.110659

    CAS  Article  Google Scholar 

  29. 29.

    W. Lia, W. Qi, H. Liying, Y. Li, Y. Xu, S. Yanhu, Z. Qi, H. Xua, H. Xu, H. Li, Synthesis and characterization of BN/Bi2WO6 composite photocatalysts with enhanced visible-light photocatalytic activity. RSC Adv. 5(108), 88832–88840 (2015). https://doi.org/10.1039/c5ra15417k

    Article  Google Scholar 

  30. 30.

    B. Singh, G. Kaur, P. Singh, K. Singh, J. Sharma, M. Kumar, R. Bala, R. Meena, S.K. Sharma, A. Kumar, Nanostructured BN-TiO2 composite with ultra-high photocatalytic activity. New J. Chem. 41, 11640–11646 (2017). https://doi.org/10.1039/C7NJ02509B

    CAS  Article  Google Scholar 

  31. 31.

    V. Stengl, J. Henych, M. Slusna, h-BN-TiO2 Nanocomposite for photocatalytic applications. J. Nanomater. 2016, 1–12 (2016). https://doi.org/10.1155/2016/4580516

    CAS  Article  Google Scholar 

  32. 32.

    J. Yan, J. Gu, X. Wang, Y. Fan, Y. Zhao, J. Lian, Y. Xu, Y. Song, H. Xu, H. Li, Design of 3D WO3/h-BN nanocomposites for efficient visible-light-driven photocatalysis. RSC Adv. 7(40), 25160–25170 (2017). https://doi.org/10.1039/c7ra02929b

    CAS  Article  Google Scholar 

  33. 33.

    X.F. Wu, L. Hui, S. Yang, J. Yi, C. Wang, C. Xu, Synthesis of SnS2/few layer boron nitride nanosheets composites as a novel material for visible-light-driven photocatalysis. Appl. Phys. A 123, 709 (2017). https://doi.org/10.1007/s00339-017-1286-6

    CAS  Article  Google Scholar 

  34. 34.

    S. Shahabuddin, R. Khanam, M. Khalid, N.M. Sarih, J.J. Ching, S. Mohamad, R. Saidur, Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arab. J. Chem. 11(6), 1000–1016 (2018). https://doi.org/10.1016/j.arabjc.2018.05.004

    CAS  Article  Google Scholar 

  35. 35.

    A. Molla, S. Hussain, Base free synthesis of iron oxide supported on boron nitride for the construction of highly functionalized pyrans and spirooxindoles. RSC Adv. 6, 5491–5502 (2016). https://doi.org/10.1039/c5ra21969h

    CAS  Article  Google Scholar 

  36. 36.

    P. Thangasamy, M. Sathish, Dwindling the re-stacking by simultaneous exfoliation of boron nitride and decoration of α-Fe2O3 nanoparticles using a solvothermal route. New J. Chem. 42(7), 5090–5095 (2018). https://doi.org/10.1039/c7nj04325b

    CAS  Article  Google Scholar 

  37. 37.

    A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, Heterogeneous photodegradation of 2, 4-dichlorophenol using FeO doped onto nano-particles of zeolite P. J. Ind. Eng. Chem. 21, 668–676 (2015). https://doi.org/10.1016/j.jiec.2014.03.035

    CAS  Article  Google Scholar 

  38. 38.

    K. Govindan, H.T. Chandran, M. Raja, S.U. Maheswari, M. Rangarajan, Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: a response surface methodology study with central composite design. J. Photochem. Photobiol. A 341, 146–156 (2017). https://doi.org/10.1016/j.jphotochem.2017.03.025

    CAS  Article  Google Scholar 

  39. 39.

    S. Nair, M. Mathews, M.R. Anantharaman, Evidence for blueshift by weak exciton confinement and tuning of bandgap in superparamagnetic nanocomposites. Chem. Phys. Lett. 406(4–6), 398–403 (2005). https://doi.org/10.1016/j.cplett.2005.02.107

    CAS  Article  Google Scholar 

  40. 40.

    M.F. Manzoora, E. Ahmada, M. Ullaha, A.M. Ranaa, A.S. Malikb, M. Farooqc, I. Ahmada, M. Hasnaind, Z.A. Shahe, W.Q. Khanf, U. Mehtabg, Impact of copper doping on the structural electrical and optical properties of auto-combustion synthesized ZnO nanocomposites. Acta Physica Pol. A 135, 458–466 (2019). https://doi.org/10.12693/APhysPolA.135.458

    Article  Google Scholar 

  41. 41.

    K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44, 17883–17905 (2015). https://doi.org/10.1039/c5dt02964c

    CAS  Article  Google Scholar 

  42. 42.

    B. Zhang, Z. Tu, F. Zhao, J. Wang, Superparamagnetic iron oxide nanoparticles prepared by using an improved polyol method. Appl. Surf. Sci. 266, 375–379 (2013). https://doi.org/10.1016/j.apsusc.2012.12.032

    CAS  Article  Google Scholar 

  43. 43.

    M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 116(30), 16276–16285 (2012). https://doi.org/10.1021/jp304041m

    CAS  Article  Google Scholar 

  44. 44.

    B. Saravanakumar, B. Jansi Rani, G. Ravi, A. Sakunthala, R. Yuvakkumar, Influence of reducing agent concentration on the structure, morphology and ferromagnetic properties of hematite (α-Fe2O3) nanoparticles. J. Mater. Sci. Mater. Electron. 28(11), 8093–8100 (2017). https://doi.org/10.1007/s10854-017-6515-4

    CAS  Article  Google Scholar 

  45. 45.

    D. Mani, M. Durai, H. Chang, E. Rusappan, S. Kumaravel, S. Thiripuranthagan, J. Ramasamy, A facile synthesis of novel ε-Fe2O3 grafted 2D h-BN nanostructures for enhanced visible active photocatalytic applications. New J. Chem. (2020). https://doi.org/10.1039/d0nj02321c

    Article  Google Scholar 

  46. 46.

    H. Xue, Y. Jiang, K. Yuan, T. Yang, J. Hou, C. Cao, F. Ke, X. Wang, Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity. Sci. Rep. 6, 29902 (2016). https://doi.org/10.1038/srep29902

    CAS  Article  Google Scholar 

  47. 47.

    C. Huang, W. Ye, Q. Liu, X. Qiu, Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl. Mater. Interfaces 6(16), 14469–14476 (2014). https://doi.org/10.1021/am5037737

    CAS  Article  Google Scholar 

  48. 48.

    C. Huang, Q. Liu, W. Fan, X. Qiu, Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate. Sci. Rep. 5, 16736 (2015). https://doi.org/10.1038/srep16736

    CAS  Article  Google Scholar 

  49. 49.

    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physica E 101, 212–219 (2018). https://doi.org/10.1016/j.physe.2018.04.009

    CAS  Article  Google Scholar 

  50. 50.

    J. Wu, L. Yin, L. Zhang, Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce3+ ions doping. RSC Adv. 3(20), 7408 (2013). https://doi.org/10.1039/c3ra23132a

    CAS  Article  Google Scholar 

  51. 51.

    J. Qu, Q. Li, C. Luo, J. Cheng, X. Hou, Characterization of flake boron nitride prepared from the low temperature combustion synthesized precursor and its application for dye adsorption. Coatings 8(6), 214 (2018). https://doi.org/10.3390/coatings8060214

    CAS  Article  Google Scholar 

  52. 52.

    F. Azeez, E. Al-hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-25673-5

    CAS  Article  Google Scholar 

  53. 53.

    D.L. Liao, G.S. Wu, B.Q. Liao, Zeta potential of shape- controlled TiO2 nanoparticles with surfactants. Colloids Surf. A 348(1–3), 270–275 (2009). https://doi.org/10.1016/j.colsurfa.2009.07.036

    CAS  Article  Google Scholar 

  54. 54.

    A. Chaudhary, A. Mohammad, S.M. Mobin, Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 227, 136–144 (2018). https://doi.org/10.1016/j.mseb.2017.10.009

    CAS  Article  Google Scholar 

  55. 55.

    A.P. Ashokan, M. Paulpandi, D. Dinesh, K. Murugan, C. Vadivalagan, G. Benelli, Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J. Clust. Sci. 28(1), 205–226 (2016). https://doi.org/10.1007/s10876-016-1075-y

    CAS  Article  Google Scholar 

  56. 56.

    K. Govindan, A.K. Suresh, T. Sakthivel, K. Murugesan, R. Mohan, V. Gunasekaran, A. Jang, Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere 237, 124479 (2019). https://doi.org/10.1016/j.chemosphere.2019.124479

    CAS  Article  Google Scholar 

  57. 57.

    S. Xia, L. Zhang, G. Pan, P. Qian, Z. Ni, Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Phys. Chem. Chem. Phys. 17(7), 5345–5351 (2015). https://doi.org/10.1039/c4cp03877k

    CAS  Article  Google Scholar 

  58. 58.

    M. Jalalah, M. Faisal, H. Bouzid, J.G. Park, S.A. Al-Sayari, A.A. Ismail, Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light. J. Ind. Eng. Chem. 30, 183–189 (2015). https://doi.org/10.1016/j.jiec.2015.05.020

    CAS  Article  Google Scholar 

  59. 59.

    M. Ramesh, M. Rao, S. Anandan, H. Nagaraja, Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33(05), 601–610 (2018). https://doi.org/10.1557/jmr.2018.30

    CAS  Article  Google Scholar 

  60. 60.

    N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, N. Manizheh, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13(12), 12242–12258 (2012). https://doi.org/10.3390/ijms131012242

    CAS  Article  Google Scholar 

  61. 61.

    P. Singh, G. Kaur, K. Singh, B. Singh, M. Kaur, M. Kaur, U. Krishnan, M. Kumar, R. Bala, A. Kumar, Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Appl. Nanosci. 8, 1–9 (2018). https://doi.org/10.1007/s13204-018-0662-7

    CAS  Article  Google Scholar 

  62. 62.

    V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 119–120, 197–206 (2012). https://doi.org/10.1016/j.apcatb.2012.02.034

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors Dr. A. Sakunthala and Dr. S. Rajesh thank the Department of Science and Technology, Science and Engineering Research Board (DST-SERB), (EMR/2017/003227 dated 16 July, 2018) Government of India, for the funding. The authors thank the Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India, for the research facilities.

Funding

Department of Science and Technology, Science and Engineering Research Board (DST-SERB), (EMR/2017/003227 dated 16 July, 2018) Government of India and the research facilities of Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India.

Author information

Affiliations

Authors

Contributions

Dr. AS guided and mentored the research. Mrs MRS synthesized all materials and carried out the laboratory work. All authors discussed the results.

Corresponding author

Correspondence to Sakunthala Ayyasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3538 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shenoy, M.R., Ayyasamy, S., Bhojan, V. et al. Visible light sensitive hexagonal boron nitride (hBN) decorated Fe2O3 photocatalyst for the degradation of methylene blue. J Mater Sci: Mater Electron 32, 4766–4783 (2021). https://doi.org/10.1007/s10854-020-05215-4

Download citation