Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes

Abstract

Soft electronics necessitate the use of elastomeric components that can sustain dynamic mechanical strain for utilization in highly durable, reliable, and wearable applications. Notably, the development of elastomeric electrodes has been of significant interest for both academic and industrial research. High electrical conductivity, low performance discrepancy under various types of mechanical stimuli, and stable repeatability in the influence of dynamic strain cycles are considered to be some of the major prerequisites for the best soft electronics. Thus, a great deal of effort has been devoted to the formation of such elastomeric electrodes via special architecture and structural engineering. Recent remarkable outcomes in elastomeric electrodes have been accomplished by forming nanocomposites with a percolated network of low-dimensional metallic materials and an elastomer. This approach has aided in achieving scalable manufacturing, soluble printing, extreme mechanical stretchability, and low costs. Herein, we report nanocomposites of silver nanowires (AgNWs) and polydimethylsiloxane (PDMS) with different mechanical properties in order to maximize the electrical performance under various types of mechanical stimuli. Owing to the percolated AgNWs embedded in elastomeric PDMS, the resulting elastomeric electrodes can sustain a mechanical strain of up to 50%, while maintaining a resistance that is below 5 Ω/sq. In addition, a moderate increase in the sheet resistance was observed even after 130 k stretch-release cycles. Our AgNW elastomeric electrodes can be used in elastomeric heaters and have led to the successful capture of dynamic electrophysiological human bio-signals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1

    C.W. Carpenter, S.T.M. Tan, C. Keef, K. Skelil, M. Malinao, D. Rodriquez, M.A. Alkhadra, J. Ramírez, D.J. Lipomi, Sens. Actuators A Phys. 288, 79 (2019)

    CAS  Article  Google Scholar 

  2. 2

    H.J. Kim, K. Sim, A. Thukral, C. Yu, Sci. Adv. 3, 1 (2017)

    CAS  Google Scholar 

  3. 3

    J. Li, L. Geng, G. Wang, H. Chu, H. Wei, Chem. Mater. 29, 8932 (2017)

    CAS  Article  Google Scholar 

  4. 4

    H. Lee, E. Kim, Y. Lee, H. Kim, J. Lee, M. Kim, H.J. Yoo, S. Yoo, Sci. Adv. 4, 1 (2018)

    Google Scholar 

  5. 5

    Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano 11, 1916 (2017)

    Google Scholar 

  6. 6

    C.G. Burns, L. Oliveira, P. Thomas, S. Iyer, S. Birrell, IEEE Intell. Veh. Symp. Proc. 2019, 70 (2019)

    Google Scholar 

  7. 7.

    X. Guo, W. Pei, Y. Wang, Y. Chen, H. Zhang, X. Wu, X. Yang, H. Chen, Y. Liu, R. Liu, Biomed. Signal Process. Control 30, 98 (2016)

    Article  Google Scholar 

  8. 8.

    J. Nuamah, Y. Seong, in 2017 12th System of Systems Engineering Conference (SoSE)(2017)

  9. 9

    A.J.T. Teo, A. Mishra, I. Park, Y.J. Kim, W.T. Park, Y.J. Yoon, ACS Biomater. Sci. Eng. 2, 454 (2016)

    CAS  Article  Google Scholar 

  10. 10

    J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi, H.Y. Zhao, H.W. Zhu, H.L. Jiang, S.H. Yu, Adv. Mater. 28, 722 (2016)

    CAS  Article  Google Scholar 

  11. 11

    H.J. Kim, A. Thukral, C. Yu, ACS Appl. Mater. Interfaces 10, 5000 (2018)

    CAS  Article  Google Scholar 

  12. 12

    N. Zhang, L. Ge, H. Xu, X. Zhu, G. Gu, Sens. Actuators A Phys. 312, 112090 (2020)

    CAS  Article  Google Scholar 

  13. 13

    B.A. Baydere, S.K. Talas, E. Samur, Sens. Actuators A Phys. 281, 84 (2018)

    CAS  Article  Google Scholar 

  14. 14

    K.J. Yu, Z. Yan, M. Han, J.A. Rogers, Npj Flex. Electron. 1, 1 (2017)

    Article  Google Scholar 

  15. 15

    J. Song, X. Feng, Y. Huang, Natl. Sci. Rev. 3, 128 (2016)

    CAS  Article  Google Scholar 

  16. 16

    G.P.T. Choi, L.H. Dudte, L. Mahadevan, Nat. Mater. 18, 999 (2019)

    CAS  Article  Google Scholar 

  17. 17

    Y. Su, X. Ping, K.J. Yu, J.W. Lee, J.A. Fan, B. Wang, M. Li, R. Li, D.V. Harburg, Y.A. Huang, C. Yu, S. Mao, J. Shim, Q. Yang, P.Y. Lee, A. Armonas, K.J. Choi, Y. Yang, U. Paik, T. Chang, T.J. Dawidczyk, Y. Huang, S. Wang, J.A. Rogers, Adv. Mater. 29, 1 (2017)

    Google Scholar 

  18. 18

    M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, M. Nankali, Compos. Part A Appl. Sci. Manuf. 126, 105616 (2019)

    CAS  Article  Google Scholar 

  19. 19

    H.J. Kim, A. Thukral, S. Sharma, C. Yu, Adv. Mater. Technol. 3, 1 (2018)

    Google Scholar 

  20. 20

    S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S.L. Craig, H. Ko, ACS Nano 11, 4346 (2017)

    CAS  Article  Google Scholar 

  21. 21

    H. Li, G. Ding, Z. Yang, Micromachines 10, 206 (2019)

    Article  Google Scholar 

  22. 22

    D.T. Nguyen, H. Youn, A.C.S. Appl, Mater. Interfaces 11, 42469 (2019)

    CAS  Article  Google Scholar 

  23. 23

    Y. Chen, R.S. Carmichael, T.B. Carmichael, ACS Appl. Mater. Interfaces 11, 31210 (2019)

    CAS  Article  Google Scholar 

  24. 24

    H.S. Liu, B.C. Pan, G.S. Liou, Nanoscale 9, 2633 (2017)

    Article  Google Scholar 

  25. 25

    F. Xu, Y. Zhu, Adv. Mater. 24, 5117 (2012)

    CAS  Article  Google Scholar 

  26. 26

    J. Kim, J. Park, U. Jeong, J.W. Park, J. Appl. Polym. Sci. 133, 1 (2016)

    Google Scholar 

  27. 27

    K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh, J. Ham, S.H. Ko, Nano Lett. 15, 5240 (2015)

    CAS  Article  Google Scholar 

  28. 28

    H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, S.H. Ko, ACS Appl. Mater. Interfaces 8, 15449 (2016)

    CAS  Article  Google Scholar 

  29. 29

    J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Nat. Photonics 7, 817 (2013)

    CAS  Article  Google Scholar 

  30. 30

    J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 8, 1590 (2014)

    CAS  Article  Google Scholar 

  31. 31

    J. Liang, K. Tong, Q. Pei, Adv. Mater. 28, 5986 (2016)

    CAS  Article  Google Scholar 

  32. 32

    V. Martinez, F. Stauffer, M.O. Adagunodo, C. Forro, J. Vörös, A. Larmagnac, ACS Appl. Mater. Interfaces 7, 13467 (2015)

    CAS  Article  Google Scholar 

  33. 33

    B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh, S.Y. Hong, J.H. Park, K. Char, J.S. Ha, J.G. Son, S.S. Lee, Adv. Funct. Mater. 30, 1 (2020)

    Google Scholar 

  34. 34

    G. Lee, G.Y. Bae, J.H. Son, S. Lee, S.W. Kim, D. Kim, S.G. Lee, K. Cho, Adv. Sci. 7, 1 (2020)

    Google Scholar 

  35. 35

    Y. Lu, L.M. Santino, S. Acharya, H. Anandarajah, J.M. D’Arcy, J. Chem. Educ. 94, 950 (2017)

    CAS  Article  Google Scholar 

  36. 36

    A.P. Schuetze, W. Lewis, C. Brown, W.J. Geerts, Am. J. Phys. 72, 149 (2004)

    Article  Google Scholar 

  37. 37

    N. Stafie, D.F. Stamatialis, M. Wessling, Sep. Purif. Technol. 45, 220 (2005)

    CAS  Article  Google Scholar 

  38. 38

    Z. Wang, A.A. Volinsky, N.D. Gallant, J. Appl. Polym. Sci. 131, 1 (2014)

    Article  Google Scholar 

  39. 39

    F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu, H. Shim, K. Sim, N.I. Kim, Z. Rao, R. Guevara, L. Contreras, F. Pan, Y. Zhang, Y.S. Guan, P. Yang, X. Wang, P. Wang, X. Wu, C. Yu, Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  40. 40

    J. Huang, B. Chen, B. Yao, W. He, IEEE Access 7, 92871 (2019)

    Article  Google Scholar 

  41. 41

    S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim, S. Bae, O.K. Park, C.M. Tschabrunn, M. Lee, S.Y. Bae, J.W. Yu, J.H. Ryu, S.W. Lee, K. Park, P.M. Kang, W.B. Lee, R. Nezafat, T. Hyeon, D.H. Kim, Nat. Nanotechnol. 13, 1048 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2019R1C1C1004104).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hae-Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 602 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Heo, S. & Kim, HJ. Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes. J Mater Sci: Mater Electron 32, 4727–4736 (2021). https://doi.org/10.1007/s10854-020-05210-9

Download citation