A lead-free perovskite Bi1/2(Na1/4Li1/4)TiO3: investigation on structural, electrical properties, and device application


In the present era, global challenges are focused to meet the security of energy due to excessive energy demands. The coal and petroleum-based fossil fuels are soon fading out due to current energy-generating units; hence, the energy from renewable energy sources becomes an alternative medium and new scientific investment. Research is carried out to boost the efficiency of these devices. The multifunctional materials having superior properties are the need of the hour to provide insight towards producing low-cost energy devices. A perovskite having the chemical formula Bi1/2(Na1/4Li1/4)TiO3 (BNLTO) is synthesized using a solid-state reaction. The standard techniques were used to investigate the structural and electrical characterizations at various experimental conditions. The X-ray diffraction (XRD) spectra elucidated the presence of an orthorhombic symmetry in the synthesized sample. The high dielectric constant and low loss factor is evolved at various frequencies and temperatures. The Nyquist plot depicts the association of the combined effect of grain and grain boundary. The activation energies evaluated from the loss and modulus spectrum are noted as ~ 1.26 eV and 0.81 eV, respectively. The charge carriers contribute to the conduction mechanism at high temperature. Finally, a poled piezoelectric energy harvester is fabricated to check its capabilities for the conversion of small impact from hand palm into electrical energy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev. 2, 1–28 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Nat. Rev. Mater. 4, 269–285 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    A. Pal, A. Sasmal, B. Manoj, D.S.D.P. Rao, A.K. Haldar, S. Sen, Mater. Chem. Phys. 244, 122639 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    I. Chinya, A. Sasmal, A. Pal, S. Sen, CrystEngComm 21, 3478–3488 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    S. Jang, M. La, S. Cho, Y. Yun, J.H. Choi, Y. Ra, S.J. Park, D. Choi, Nano Energy 70, 104541 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    S. Nie, H. Guo, Y. Lu, J. Zhuo, J. Mo, Z.L. Wang, Adv. Mater. Technol. 5, 2000454 (2020)

    Article  Google Scholar 

  7. 7.

    C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752–758 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, Z.L. Wang, ACS Nano 7, 8266–8274 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    A. Gaur, S. Tiwari, C. Kumar, P. Maiti, Nanoscale Adv. 1, 3200–3211 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    J.F. Scott, Science 315, 954–959 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    D. Kip, Appl. Phys. B 67, 131–150 (1998)

    CAS  Article  Google Scholar 

  12. 12.

    W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. 12, 442–462 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    I.G. Siny, E. Husson, J.M. Beny, S.G. Lushnikov, E.A. Rogacheva, P.P. Syrnikov, Phys. B 293, 382–389 (2001)

    CAS  Article  Google Scholar 

  14. 14.

    N. Scarisoreanu, F. Craciun, V. Ion, S. Birjega, M. Dinescu, Appl. Surf. Sci. 254, 1292–1297 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    L. Sun, J.Q. Qi, P. Du, X.H. Wang, L.T. Li, Mater. Chem. Phys. 113, 329–333 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    W.L. Li, W.P. Cao, D. Xu, W. Wang, W.D. Fei, J. Alloy. Compd. 613, 181–186 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    J. Sheng, Y.L. Qiao, W.Z. Zhang, W.P. Cao, C. Gao, W.L. Li, J. Alloy. Compd. 819, 153045 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    A. Jain, Y. Wang, H. Guo, N. Wang, J. Am. Ceram. Soc. 103, 6308–6318 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Y.M. González, A.P. Barranco, J.D.S. Guerra, J. Electroceram. 44, 87–94 (2020)

    Article  Google Scholar 

  20. 20.

    M.V. Ramana, S.R. Kiran, N.R. Reddy, K.V.S. Kumar, V.R.K. Murty, B.S. Murty, J. Adv. Dielectr. 01, 71–77 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    N. Pradhani, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. Mater. 1, 015007 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    S.M. Ibrahim, A. Bourezgui, A.F. Al-Hossainy, J. Polym. Res. 27, 264 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    A.A.I. Abd-Elmageed, S.M. Ibrahim, A. Bourezguicd, A.F. Al-Hossainy, New J. Chem. 44, 8621–8637 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    S.M. Ibrahim, A. Bourezgui, A.A.I. Abd-Elmageed, I. Kacem, A.F. Al-Hossainy, J. Mater. Sci. 31, 8690–8704 (2020)

    CAS  Google Scholar 

  25. 25.

    S. M. Ibrahim, A. F. Al-Hossainy, Chem. Pap. (2020) 1–13

  26. 26.

    A.F. Al-Hossainy, A.A.I. Abd-Elmageed, A.T.A. Ibrahim, Arab. J. Chem. 12, 2853–2863 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    H.A. Maddah, M. Bassyouni, M.H.A. Aziz, M. ShZoromba, A.F. Al-Hossainy, Renewable Energy 162, 489–503 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloy. Compd. 750, 507–514 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, J. Mater. Sci. 30, 1919–1926 (2019)

    CAS  Google Scholar 

  30. 30.

    A.B. Kulkarni, S.N. Mathad, J. Nano- Electron. Phys. 10, 01001 (2018)

    Google Scholar 

  31. 31.

    N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, P. Bisis, Md.M. Saikh, F. Khatun, S. Das, P.P. Ray, A.C.S. Appl, Mater. Interfaces 9, 23048–23059 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    B. Park, An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042.

  33. 33.

    S. Hajra, K. Mohanta, M. Sahu, V. Purohit, R.N.P. Choudhary, Appl. Phys. A 125, 369 (2019)

    CAS  Article  Google Scholar 

  34. 34.

    S. Nath, S.K. Barik, R.N.P. Choudhary, J. Mater. Sci. 26, 8199–8206 (2015)

    CAS  Google Scholar 

  35. 35.

    S.K. Barik, S. Nath, S. Hajra, R.N.P. Choudhary, Mod. Phys. Lett. B 33, 1950352 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    H. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, J. Alloy. Compd. 720, 116–125 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    H. Singh, K.L. Yadav, J. Phys. 23, 385901 (2011)

    Google Scholar 

  38. 38.

    K. Auromun, R.N.P. Choudhary, Phys. B 594, 412291 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    C.K. Jeong, J.H. Lee, D.Y. Hyeon, Y. Kim, S. Kim, C. Baek, G.-J. Lee, M.-K. Lee, J.-J. Park, K. Park, Appl. Surf. Sci. 512, 144784 (2020)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Subrat Kumar Barik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Gogoi, K.K., Sahoo, S. et al. A lead-free perovskite Bi1/2(Na1/4Li1/4)TiO3: investigation on structural, electrical properties, and device application. J Mater Sci: Mater Electron 32, 4629–4638 (2021). https://doi.org/10.1007/s10854-020-05201-w

Download citation