Fabrication and unravelling the impact of iron-deficiency amount on crystal structure, micromorphology, elastic and electromagnetic properties of Ni0.25Cu0.13Zn0.62Fe2−xO4−3x/2 ferrites under different sintering temperatures

Abstract

In this work, polycrystalline Ni0.25Cu0.13Zn0.62Fe2−xO43x/2 ferrites were synthesized via the solid-state reaction route and sintered at four different temperatures (1100–1250 °C; in steps of 50 °C) to investigate the impacts of iron-deficiency amount on the structural, micromorphology, elastic, and electromagnetic properties. The crystal structure, phase formation, micromorphology, and grain size were examined through X-ray diffraction, Fourier transforms infrared spectroscopy and scanning electron microscopy. The structural analysis confirms the evolution of the cubic spinel skeleton without any impurity phase. The lattice parameter increases linearly with iron-deficiency amount at 1100 °C, while it varies non-linearly at 1150, 1200, and 1250 °C. The elastic properties such as stiffness constants, elastic constants, longitudinal wave velocity, transverse wave velocity, mean elastic wave velocity, Poisson’s ratio, and Debye temperature were calculated from infrared spectroscopic data. The elastic moduli were corrected via Hassselman and Fulrath, Ledbetter and Datta, and the elastic theory models. The microstructural analysis reveals that agglomerated and abnormal grain growth and agglomerations take place due to the magnetic interaction between the individual grains. An improvement in dielectric properties with sintering temperature is evident due to the improved densification and generation of Fe2+ ions. The AC conductivity analysis suggests that the electrical conduction process is attributed to the small polaron hopping. Nyquist representation proclaims that the electrical conduction is ascribed to the contribution of the grain boundary. The observed variations in permeability and magnetic loss with iron-deficiency amount may be accredited to the modification of density, porosity, grain size, and anisotropy contribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The authors declared that the datasets generated during and/or analyzed during the current study will be available from the corresponding author upon reasonable request.

References

  1. 1.

    A. Ghasemi, M. Mousavinia, Ceram. Int. 40, 2825 (2014)

    CAS  Google Scholar 

  2. 2.

    C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Magn. Magn. Mater. 322, 230 (2010)

    CAS  Google Scholar 

  3. 3.

    U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Ceram. Int. 43, 1129 (2017)

    CAS  Google Scholar 

  4. 4.

    S. Wells, C.V. Ramana, Ceram. Int. 39, 954 (2013)

    Google Scholar 

  5. 5.

    S.A. Mazen, N.I. Abu-Elsaad, J. Magn. Magn. Mater. 442, 72 (2017)

    CAS  Google Scholar 

  6. 6.

    A.A. Ati, J. Mater. Sci. 29, 12010 (2018)

    CAS  Google Scholar 

  7. 7.

    F. Tudorache, Superlatt. Microstruct. 116, 131 (2018)

    CAS  Google Scholar 

  8. 8.

    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. AlLohedan, Mater. Chem. Phys. 204, 410 (2018)

    CAS  Google Scholar 

  9. 9.

    M. Ibrahim, O. Oleiwi, R. Yilgin, A.N. Koc, Ceram. Int. 38, 6671 (2012)

    Google Scholar 

  10. 10.

    E.H. El-Ghazzawy, S.N. Alamri, Bull. Mater. Sci. 38, 915 (2015)

    CAS  Google Scholar 

  11. 11.

    M. Hashim, A. Ahmed, S.A. Ali, S.E. Shirsath, M.M. Ismail, R. Kumar, S. Kumar, S.S. Meena, D. Ravinder, J. Alloys Compd. 834, 155089 (2020)

    CAS  Google Scholar 

  12. 12.

    A.V. Raut, P.P. Khirade, A. Humbe, S.A. Jadhav, D.R. Shengule, J. Supercond. Nov. Magn. 29, 1331 (2016)

    CAS  Google Scholar 

  13. 13.

    F. Xu, L. Ma, Q. Huo, M. Gan, J. Tang, J. Magn. Magn. Mater. 374, 311 (2015)

    CAS  Google Scholar 

  14. 14.

    M. Beyranvand, A. Gholizadeh, J. Mater. Sci. 31, 5124 (2020)

    CAS  Google Scholar 

  15. 15.

    M.A. Gabal, Y.M. Al Angari, A.Y. Obaid, A. Qusti, Adv. Powder Technol. 25, 457 (2014)

    CAS  Google Scholar 

  16. 16.

    D. Stoppels, Developments in soft magnetic power ferrites. J. Magn. Magn. Mater. 160, 323 (1996)

    CAS  Google Scholar 

  17. 17.

    H.I. Hsiang, W.C. Liao, Y.J. Wang, Y.F. Cheng, J. Eur. Ceram. Soc. 24, 2015 (2004)

    CAS  Google Scholar 

  18. 18.

    T. Krishnaveni, B.R. Kanth, V.S.R. Raju, S.R. Murthy, J. Alloys Compd. 414, 282 (2006)

    CAS  Google Scholar 

  19. 19.

    P. Guzdek, J. Kulawik, K. Zaraska, A. Bienkowski, J. Magn. Magn. Mater. 322, 2897 (2010)

    CAS  Google Scholar 

  20. 20.

    S. Zhang, L. Jia, H. Zhang, J. Li, T. Zhou, B. Liu, J. Appl. Phys. 115, 17A524 (2014)

    Google Scholar 

  21. 21.

    X. Wang, Y. Li, J. Li, G. Yu, L. Zuo, H. Zhang, J. Mater. Sci. 25, 4230 (2014)

    CAS  Google Scholar 

  22. 22.

    W. Ling, IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  23. 23.

    J.C. Jao, P. Li, S.F. Wang, Jpn. J. Appl. Phys. 46, 5792 (2007)

    CAS  Google Scholar 

  24. 24.

    X.M. Cui, J. Zhou, B. Li, Z.F. Tong, Mater. Manuf. Process. 22, 251 (2007)

    CAS  Google Scholar 

  25. 25.

    W. Ling, H. Zhang, Y. Li, D. Chen, Q. Wen, J. Shen, J. Appl. Phys. 107, 09D911 (2010)

    Google Scholar 

  26. 26.

    Q. Yang, H. Zhang, Y. Liu, Q. Wen, L. Jia, Mater. Lett. 79, 103 (2012)

    CAS  Google Scholar 

  27. 27.

    K.O. Low, F.R. Sale, J. Magn. Magn. Mater. 256, 221 (2003)

    CAS  Google Scholar 

  28. 28.

    T.T. Ahmed, I.Z. Rahman, M.A. Rahman, J. Mater. Process. Technol. 153, 797 (2004)

    Google Scholar 

  29. 29.

    J. Murbe, J. Töpfer, J. Eur. Ceram. Soc. 32, 1091 (2012)

    Google Scholar 

  30. 30.

    C. Clausell, A. Barba, Boletín de la Sociedad Española de Cerámica y Vidrio 57, 29 (2018)

    Google Scholar 

  31. 31.

    A. Gholizadeh, E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017)

    CAS  Google Scholar 

  32. 32.

    A. Gholizadeh, J. Magn. Magn. Mater. 452, 389 (2018)

    CAS  Google Scholar 

  33. 33.

    P.C.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigam, J. Alloys Compd. 453, 298 (2008)

    CAS  Google Scholar 

  34. 34.

    S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, J. Appl. Phys. 112, 063908 (2012)

    Google Scholar 

  35. 35.

    S.M. Ramay, S.A. Siddiqi, S. Atiq, M.S. Awan, S. Riaz, Chin. J. Chem. Phys. 23, 591 (2010)

    CAS  Google Scholar 

  36. 36.

    L. Zhiyuan, X. Maoren, Z. Qingqiu, J. Magn. Magn. Mater. 219, 9 (2000)

    CAS  Google Scholar 

  37. 37.

    H. Su, X. Tang, H. Zhang, L. Jia, Z. Zhong, J. Magn. Magn. Mater. 322, 1779 (2010)

    CAS  Google Scholar 

  38. 38.

    Z.H. Khan, M.M. Rahman, S.S. Sikder, M.A. Hakim, D.K. Saha, J. Alloys Compd. 548, 208 (2013)

    CAS  Google Scholar 

  39. 39.

    K. Sun, Z. Pu, Y. Yang, L. Chen, Z. Yu, C. Wu, X. Jiang, Z. Lan, J. Alloys Compd. 681, 139 (2016)

    CAS  Google Scholar 

  40. 40.

    L. Chen, Z. Yu, Y. Yang, R. Guo, X. Jiang, K. Sun, C. Wu, Z. Lan, J. Magn. Magn. Mater. 387, 1 (2015)

    CAS  Google Scholar 

  41. 41.

    J. Mürbe, J. Töpfer, J. Magn. Magn. Mater. 324, 578 (2012)

    Google Scholar 

  42. 42.

    J. Murbe, J. Töpfer, Int. J. Appl. Ceram. Technol 4, 415 (2007)

    Google Scholar 

  43. 43.

    J. Murbe, J. Töpfer, J. Electroceram. 15, 215 (2005)

    Google Scholar 

  44. 44.

    H. Bahiraei, C.K. Ong, Mater. Res. Bull. 111, 195 (2019)

    CAS  Google Scholar 

  45. 45.

    S.L. Kakani, C. Hemrajani, Solid State Phys (Sultan Chand & Sons, New Delhi, 1997).

    Google Scholar 

  46. 46.

    B. Raj, V. Rajendran, P. Palanichamy, Science & Technology of Ultrasonic (Narosa Publ House, New Delhi, 2004).

    Google Scholar 

  47. 47.

    S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, J. Mol. Struct. 1038, 40 (2013)

    CAS  Google Scholar 

  48. 48.

    A. Gholizadeh, J. Am. Ceram. Soc. 100, 3577 (2017)

    CAS  Google Scholar 

  49. 49.

    H. Khedri, A. Gholizadeh, Appl. Phys. A 125, 709 (2019)

    Google Scholar 

  50. 50.

    S. Saparjya, S. Behera, T. Badapanda, R. Padhee, P.R. Das, J. Mater. Sci. 31, 8116 (2020)

    CAS  Google Scholar 

  51. 51.

    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company Inc, Boston, 1978), p. 89

    Google Scholar 

  52. 52.

    J. Smit, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhovan, 1959), pp. 221–245

    Google Scholar 

  53. 53.

    Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S. Khameneh Asl, G. Yousefi, L. Karimi, J. Magn. Magn. Mater. 361, 150 (2014)

    CAS  Google Scholar 

  54. 54.

    Q. Lin, G. Yuan, Y. He, L. Wang, J. Dong, Y. Yu, Mater. Des. 78, 80 (2015)

    CAS  Google Scholar 

  55. 55.

    A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, K. Hsu, C. Vittoria, V.G. Haris, Appl. Phys. Lett. 94, 113109 (2009)

    Google Scholar 

  56. 56.

    P.J. van der Zaag, V.A.M. Brabers, M.T. Johnson, A. Noordermeer, P.F. Bongers, Phys. Rev. B 51, 12008 (1995)

    Google Scholar 

  57. 57.

    M.A. Gabal, Y.M. AlAngari, J. Magn. Magn. Mater. 322, 3159 (2010)

    CAS  Google Scholar 

  58. 58.

    Q. Han, D. Ji, G. Tang, Z. Li, X. Hou, W. Qi, S. Liu, R. Bian, J. Magn. Magn. Mater. 324, 1975 (2012)

    CAS  Google Scholar 

  59. 59.

    J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, J. Alloys Compd. 546, 77 (2013)

    CAS  Google Scholar 

  60. 60.

    A. Ghasemi, S. Ekhlasi, M. Mousavinia, J. Magn. Magn. Mater. 354, 136 (2014)

    CAS  Google Scholar 

  61. 61.

    P.P.G. Dessai, S.S. Meena, V.M.S. Verenkar, J. Alloys Compd. 842, 155855 (2020)

    Google Scholar 

  62. 62.

    K. Sun, Z. Lan, Z. Yu, X. Jiang, J. Huang, J. Magn. Magn. Mater. 323, 927 (2011)

    CAS  Google Scholar 

  63. 63.

    N. Lwin, M.N.A. Fauzi, S. Sreekantan, R. Othman, A.A. Thant, Int. J. Nanosci. 10, 1257 (2011)

    CAS  Google Scholar 

  64. 64.

    H.S. Ahamad, K.G. Rewatkar, N.S. Meshram, S.J. Dhoble, Ferroelectrics 555, 146 (2020)

    CAS  Google Scholar 

  65. 65.

    A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. 56, 174 (1994)

    Google Scholar 

  66. 66.

    S. Vives, E. Gaffet, C. Meunier, Mater. Sci. Eng. A. 366, 229 (2004)

    Google Scholar 

  67. 67.

    M.A. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, J. Alloys Compd. 735, 975 (2018)

    CAS  Google Scholar 

  68. 68.

    K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, J. Alloys Compd. 509, 6756 (2011)

    CAS  Google Scholar 

  69. 69.

    V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, J. Alloys Compd. 656, 5 (2016)

    Google Scholar 

  70. 70.

    S.G. Kakade, R.C. Kambale, C.V. Ramanna, Y.D. Kolekar, RSC Adv. 6, 33308 (2016)

    CAS  Google Scholar 

  71. 71.

    M. Yousaf, M.N. Akhtar, B. Wang, A. Noor, Ceram. Int. 46, 4280 (2020)

    CAS  Google Scholar 

  72. 72.

    N. Bouhadouza, A. Rais, S. Kaoua, M. Moreau, K. Taibi, A. Addou, Ceram. Int. 41, 11687 (2015)

    CAS  Google Scholar 

  73. 73.

    P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Mater. Chem. Phys. 191, 215 (2017)

    CAS  Google Scholar 

  74. 74.

    Z. Yan, J. Luo, J. Alloys Compd. 695, 1185 (2017)

    CAS  Google Scholar 

  75. 75.

    K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Phys. B Condens. Matter 407, 795 (2012)

    CAS  Google Scholar 

  76. 76.

    S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S.D. More, K.M. Jadhav, Ceram. Int. 46, 13170 (2020)

    CAS  Google Scholar 

  77. 77.

    J. Kalarus, G. Kogias, D. Holz, V.T. Zaspalis, J. Magn. Magn. Mater. 324, 2788 (2012)

    CAS  Google Scholar 

  78. 78.

    D. Holz, A. Pagana, V. Tsakaloudi, G. Kogias, V. Zaspalis, J. Jpn. Soc. Powder Powder Metall. 61, S75 (2014)

    Google Scholar 

  79. 79.

    M.F. Al-Hilli, S. Li, K.D. Kassim, Mater. Chem. Phys. 128, 127 (2011)

    CAS  Google Scholar 

  80. 80.

    P. Sainamthip, V.R.W. Amarakoon, J. Am. Ceram. Soc. 71, 644 (1988)

    CAS  Google Scholar 

  81. 81.

    M.M.M. Zulkimi, M. Hashim, I. Ismail, R.S. Azis, S. Kanagesan, M.S. Mustaffa, M.K.I.M. Zawawi, J. Supercond. Nov. Magn. 27, 1903 (2014)

    Google Scholar 

  82. 82.

    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  83. 83.

    X. Wang, D. Zhang, G. Wang, L. Jin, J. Li, Y. Liao, H. Zhang, S. Wang, Ceram. Int. 46, 10652 (2020)

    CAS  Google Scholar 

  84. 84.

    Y. Yang, H. Zhang, J. Li, G. Gan, G. Wang, D. Wen, Appl. Phys. A 124, 785 (2018)

    CAS  Google Scholar 

  85. 85.

    F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan, H. Zhang, Inorg. Chem. 56, 4512 (2017)

    Google Scholar 

  86. 86.

    H. Su, X. Tang, H. Zhang, Z. Zhang, J. Shen, J. Appl. Phys. 109, 07A501 (2011)

    Google Scholar 

  87. 87.

    N. Mechi, A. Mallah, S. Hcini, M.L. Bouazizi, M. Boudard, A. Dhahri, J. Supercond. Nov. Magn. 33, 1547 (2020)

    CAS  Google Scholar 

  88. 88.

    K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Ceram. Int. 41, 4492 (2015)

    CAS  Google Scholar 

  89. 89.

    B.B.V.S.V. Prasad, K.V. Ramesh, A. Srinivas, Int. J. Mod. Phys. B 32, 1850172 (2018)

    Google Scholar 

  90. 90.

    K. Akhtar, M. Gul, I.U. Haq, R.A. Khan, Z.U. Khan, A. Hussain, Ceram. Int. 42, 18064 (2016)

    CAS  Google Scholar 

  91. 91.

    J. Liu, Y. Mei, W. Liu, X. Li, F. Hou, G.Q. Lu, J. Magn. Magn. Mater. 454, 6 (2018)

    CAS  Google Scholar 

  92. 92.

    R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  93. 93.

    G.D. Tang, Z.F. Shang, X.Y. Zhang, J. Xu, Z.Z. Li, C.M. Zhen, W.H. Qi, L.L. Lang, Phys. B Condens. Matter 463, 26 (2015)

    CAS  Google Scholar 

  94. 94.

    K.A. Khalaf, A. Al-Rawas, A. Gismelseed, M. Al-Ruqeishi, S. Al-Ani, A. Al-Jubouri, K. Al-Ryami, B. Al-Jaddedi, Adv. Mater. 8, 70 (2019)

    CAS  Google Scholar 

  95. 95.

    B.J. Evans, S. Hafner, J. Phys. Chem. Solids 29, 1573 (1968)

    CAS  Google Scholar 

  96. 96.

    A. Kumar, A. Singh, M.S. Yadav, M. Arora, R.P. Pant, Thin Solid Films 519, 1056 (2010)

    CAS  Google Scholar 

  97. 97.

    S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El Nimr, M.M. Ayad, M. Bakr, J. Magn. Magn. Mater. 322, 2369 (2010)

    CAS  Google Scholar 

  98. 98.

    Ch.S. Lakshmi, Ch.S.L.N. Sridhar, G. Govindraj, S. Bangarraju, D.M. Potukuchi, Phys. B 459, 97 (2015)

    CAS  Google Scholar 

  99. 99.

    M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, S.K. Rashmi, J. Mater. Sci. 29, 20395 (2018)

    CAS  Google Scholar 

  100. 100.

    S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, Mater. Chem. Phys. 106, 82 (2007)

    CAS  Google Scholar 

  101. 101.

    Y. Liu, Y. Zhang, J.D. Feng, C.F. Li, J. Shi, R. Xiong, J. Exp. Nano Sci. 4, 159 (2009)

    CAS  Google Scholar 

  102. 102.

    C.V. Reddy, S.V.P. Vattikuti, R.V.S.S.N. Ravikumar, S.J. Moon, J. Shim, J. Magn. Magn. Mater. 394, 70 (2015)

    CAS  Google Scholar 

  103. 103.

    T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pedziwiatr, R. Gargula, B. Bogacz, P. Kurzydło, J. Alloys Compd. 819, 152945 (2020)

    CAS  Google Scholar 

  104. 104.

    C. Meiorin, D. Muraca, K.R. Pirota, M.I. Aranguren, M.A. Mosiewicki, Eur. Polym. J. 53, 90 (2014)

    CAS  Google Scholar 

  105. 105.

    R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, J. Magn. Magn. Mater. 447, 48 (2018)

    Google Scholar 

  106. 106.

    M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Ceram. Int. 43, 4357 (2017)

    CAS  Google Scholar 

  107. 107.

    Y.M. Galperin, Introduction to Modern Solid-State Physics (Department of Physics, Oslo, 2001).

    Google Scholar 

  108. 108.

    E.H. El-Ghazzawy, J. Magn. Magn. Mater. 497, 166017 (2020)

    CAS  Google Scholar 

  109. 109.

    S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Vasoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi, K.B. Modi, Indian J. Pure Appl. Phys. 45, 596 (2007)

    CAS  Google Scholar 

  110. 110.

    M.B. Mohamed, A.M. Wahba, Ceram. Int. 40, 11773 (2014)

    CAS  Google Scholar 

  111. 111.

    S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, K.M. Jadhav, J. Magn. Magn. Mater. 350, 39 (2014)

    CAS  Google Scholar 

  112. 112.

    N. Shamgani, A. Gholizadeh, Ceram. Int. 45, 239 (2019)

    CAS  Google Scholar 

  113. 113.

    R.J.D. Tilley, J. Wiley, The Science of Materials (Wiley, Hoboken, 2004).

    Google Scholar 

  114. 114.

    S.M. Patange, S.E. Shirsath, K.S. Lohar, S.G. Algude, S.R. Kamble, N. Kulkarni, D.R. Mane, K.M. Jadhav, J. Magn. Magn. Mater. 325, 107 (2013)

    CAS  Google Scholar 

  115. 115.

    S.A. Mazen, T.A. Elmosalami, I.S.R.N. Condens, Matter Phys. 2011, 1 (2011)

    Google Scholar 

  116. 116.

    W.R. Wooster, Rep. Prog. Phys. 16, 62 (1953)

    Google Scholar 

  117. 117.

    V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, J. Alloys Compd. 488, 199 (2009)

    CAS  Google Scholar 

  118. 118.

    E.H. El-Ghazzawy, M.A. Amer, J. Alloys Compd. 690, 293 (2017)

    CAS  Google Scholar 

  119. 119.

    R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Ceram. Int. 42, 16096 (2016)

    CAS  Google Scholar 

  120. 120.

    D.P.H. Hasselmann, R.M. Fulrath, J. Am. Ceram. Soc. 47, 52 (1964)

    Google Scholar 

  121. 121.

    H. Ledbetter, S. Dutta, J. Acoust. Soc. Am. 79, 239 (1986)

    CAS  Google Scholar 

  122. 122.

    R.W. Rice, Treatise on Material Science and Technology (Academic, New York, 1977), p. 199

    Google Scholar 

  123. 123.

    P.U. Sharma, K.B. Modi, Phys. Scr. 81, 015601 (2010)

    Google Scholar 

  124. 124.

    S.F. Pugh, Philos. Mag. 45, 823 (1954)

    CAS  Google Scholar 

  125. 125.

    S.A.B.I.N. Frantsevich, F.F. Voronov, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (I.N. Frant Naukova Dumka, Kiev, 1983).

    Google Scholar 

  126. 126.

    M. Anis-ur-Rehman, G. Asghar, J. Alloys Compd. 509, 435 (2011)

    CAS  Google Scholar 

  127. 127.

    J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 88

    Google Scholar 

  128. 128.

    E. Frey, K. Kroy, Ann. Der Phys. 14, 20 (2005)

    CAS  Google Scholar 

  129. 129.

    K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Google Scholar 

  130. 130.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  131. 131.

    U.B. Gawas, M.M. Kothawale, R. Pednekar, S.S. Meena, N.K. Prasad, S.K. Alla, J. Supercond. Nov. Magn. 30, 1287 (2017)

    CAS  Google Scholar 

  132. 132.

    I.T. Rabinkin, Z.I. Novikova, Ferrites (Izv Acad Nauk USSR, Minsk, 1960), p. 146

    Google Scholar 

  133. 133.

    M.M.N. Ansari, S. Khan, N. Ahmad, J. Alloys Compd. 831, 154778 (2020)

    CAS  Google Scholar 

  134. 134.

    R. Guo, Z. Yu, Y. Yang, K. Sun, C. Wu, H. Liu, X. Jiang, Z. Lan, L. Li, J. Supercond. Nov. Magn. 30, 1767 (2017)

    CAS  Google Scholar 

  135. 135.

    M.C. Dimri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Mater. Sci. Eng. B 133, 42 (2006)

    CAS  Google Scholar 

  136. 136.

    M.S.R. Prasad, B.B.V.S.V. Prasad, B.R. Babu, Int. J. Mod. Phys. B 29, 1550067 (2015)

    Google Scholar 

  137. 137.

    V.T. Zaspalis, V. Tsakaloudi, G. Kogias, EPJ Web. Conf. 75, 04004 (2014)

    Google Scholar 

  138. 138.

    K. Praveena, K. Sadhana, S. Matteppanavar, H.L. Liu, J. Magn. Magn. Mater. 423, 343 (2017)

    CAS  Google Scholar 

  139. 139.

    K. Chen, G. Li, F. Gao, J.M. Liu, J. Zhu, J. Appl. Phys. 7, 101 (2007)

    CAS  Google Scholar 

  140. 140.

    M. Qayoom, R. Bhat, K.A. Shah, A.H. Pandit, A. Firdous, G.N. Dar, J. Electron. Mater. 49, 1215 (2020)

    CAS  Google Scholar 

  141. 141.

    S. Nasir, M. Anis-ur-Rehman, Phys. Scr. 84, 025603 (2011)

    Google Scholar 

  142. 142.

    C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci. 31, 6744 (2020)

    CAS  Google Scholar 

  143. 143.

    L. Peng, L.Z. Li, X.X. Zhong, Y. Hu, X.Q. Tu, R. Wang, J. Alloys Compd. 665, 31 (2016)

    CAS  Google Scholar 

  144. 144.

    N. Rezlescu, E. Rezlescu, Phys. Stat. Sol. 23, 575 (1974)

    CAS  Google Scholar 

  145. 145.

    P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala, Mater. Chem. Phys. 132, 138 (2012)

    CAS  Google Scholar 

  146. 146.

    H. Bottger, V.V. Bryksin, Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985).

    Google Scholar 

  147. 147.

    A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  148. 148.

    K. Parida, S. Das, P.K. Mahapatra, R.N.P. Choudhary, Mater. Res. Bull. 111, 7 (2019)

    CAS  Google Scholar 

  149. 149.

    A. Ray, T. Basu, B. Behera, M. Kumar, R. Thapa, P. Nayak, J. Alloys Compd. 768, 198 (2018)

    CAS  Google Scholar 

  150. 150.

    M. Kamran, M. Anis-ur-Rehman, J. Alloys Compd. 822, 153583 (2020)

    CAS  Google Scholar 

  151. 151.

    M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, RSC Adv. 6, 20876 (2016)

    CAS  Google Scholar 

  152. 152.

    A. Gholizadeh, M. Beyranvand, Phys. B 584, 412079 (2020)

    CAS  Google Scholar 

  153. 153.

    Z. Yue, J. Zhou, L. Li, X. Wang, Z. Gui, Mater. Sci. Eng. B 86, 64 (2001)

    Google Scholar 

  154. 154.

    G.F. Pike, Phys. Rev. B 6, 1572 (1972)

    CAS  Google Scholar 

  155. 155.

    S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    CAS  Google Scholar 

  156. 156.

    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)

    CAS  Google Scholar 

  157. 157.

    D.L. Sekulic, Z.Z. Lazarevic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevi, J. Mater. Sci. 26, 1291 (2015)

    CAS  Google Scholar 

  158. 158.

    N.F. Mott, Philos. Mag. 19, 835 (1969)

    CAS  Google Scholar 

  159. 159.

    R. Lahouli, J. Massoudi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, L. Bessais, RSC Adv. 9, 19949 (2019)

    CAS  Google Scholar 

  160. 160.

    S.F. Mansour, F. Al-Hazmi, M.A. Abdo, J. Alloys Compd. 792, 626 (2019)

    CAS  Google Scholar 

  161. 161.

    K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112 (2012)

    Google Scholar 

  162. 162.

    A. Ray, T. Basu, B. Behera, D.S. Gavali, R. Thapa, S. Vajandar, T. Osipowicz, P. Nayak, Mater. Chem. Phys. 239, 122250 (2020)

    CAS  Google Scholar 

  163. 163.

    M.M.V. Petrović, R. Grigalaitis, A. Dzunuzovic, J.D. Bobić, B.D. Stojanović, R. Šalaševičius, J. Banys, J. Alloys Compd. 749, 1043 (2018)

    Google Scholar 

  164. 164.

    S. Deka, P.A. Joy, J. Am. Ceram. Soc. 90, 1494 (2007)

    CAS  Google Scholar 

  165. 165.

    T. Nakamura, J. Magn. Magn. Mater. 168, 285 (1997)

    CAS  Google Scholar 

  166. 166.

    A. Globus, P. Duplex, M. Guyot, IEEE Trans. Magn. 7, 617 (1971)

    CAS  Google Scholar 

  167. 167.

    A.A. Sattar, H.M. El-Sayed, K.M. El-Shokrofy, M.M. El-Tabey, J. Appl. Sci. 5, 162 (2005)

    Google Scholar 

  168. 168.

    B.B.V.S.V. Prasad, K.V. Ramesh, A. Srinivas, Ceram. Int. 45, 4549 (2019)

    Google Scholar 

  169. 169.

    T. Nakamura, J. Appl. Phys. 88, 348 (2000)

    CAS  Google Scholar 

  170. 170.

    T. Nakamura, Y. Okano, J. Appl. Phys. 79, 7129 (1996)

    CAS  Google Scholar 

  171. 171.

    P. Lathiya, M. Kreuzer, J. Wang, J. Magn. Magn. Mater. 499, 166273 (2020)

    CAS  Google Scholar 

  172. 172.

    M.S. Mustaffa, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, M.M. Zulkimi, J. Supercond. Nov. Magn. 27, 1451 (2014)

    Google Scholar 

  173. 173.

    A. Verma, T.C. Goel, R.G. Mendiratta, R.G. Gupta, J. Magn. Magn. Mater. 192, 271 (1999)

    CAS  Google Scholar 

  174. 174.

    A. Beitollahi, M. Hoor, J. Mater. Sci. 14, 477 (2003)

    CAS  Google Scholar 

  175. 175.

    C.W. Kim, J.G. Koh, J. Korean Phys. Soc. 41, 364 (2002)

    Google Scholar 

  176. 176.

    Z. Peng, X. Fu, H. Ge, Z. Fu, C. Wang, L. Qi, H. Miao, J. Magn. Magn. Mater. 323, 2513 (2011)

    CAS  Google Scholar 

  177. 177.

    A.J. Moulson, J.M. Herbert, Electroceramics (Cambridge University Press, London, 1990).

    Google Scholar 

  178. 178.

    A. Thakur, P. Mathur, M. Singh, J. Phys. Chem. Solids 68, 378 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Physics, University of Dhaka, Bangladesh for the materials support to perform this research. Sincere acknowledgment is expressed to the authority of the Center for Advanced Research in Sciences (CARS), University of Dhaka and Solid-State Physics Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET) for providing the XRD, FTIR, SEM, and Impedance Analyzer facilities, respectively. The author Sharifa Nasrin would like to thank University Grants Commission (UGC), Bangladesh for providing research a fellowship (Grant Number: UGC/Scholarship/College-18/Ph.D./2017/7585) to perform her Ph.D. research at the Department of Physics, University of Dhaka. Last but not the least, the author Sharifa Nasrin greatly acknowledges the Directorate of Secondary and Higher Education, Ministry of Education, Government of the People’s Republic of Bangladesh for the study leave to pursue her higher studies at the Department of Physics, University of Dhaka.

Author information

Affiliations

Authors

Contributions

SN: Methodology, Investigation, Validation, Data curation, Formal analysis, Writing—original draft, preparation, Writing—review & editing. MS: Investigation, Data curation, formal analysis, Writing—review & editing. AKM. AH: Supervision, Writing—review and editing. MDR: Conceptualization, Methodology, Supervision, Project administration, funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Md. D. Rahaman.

Ethics declarations

Conflict of interest

The authors declare that they have no known significant competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Hereby, I on behalf of all authors consciously assure that the manuscript Fabrication and unravelling the impact of iron-deficiency amount on crystal structure, micromorphology, elastic and electromagnetic properties of Ni0.25Cu0.13Zn0.62Fe2−xO4-3x/2 ferrites under different sintering temperatures is original research work. With the submission of this manuscript, I would like to undertake the responsibility that the above-mentioned manuscript has not been published totally or partly, accepted for publication, or under editorial review for publication elsewhere. All authors have been personally and actively involved in substantive work leading to the manuscript and will hold themselves jointly and individually responsible for its content. Finally, it is also declared that if the article is accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasrin, S., Sharmin, M., Hossain, A.K.M.A. et al. Fabrication and unravelling the impact of iron-deficiency amount on crystal structure, micromorphology, elastic and electromagnetic properties of Ni0.25Cu0.13Zn0.62Fe2−xO4−3x/2 ferrites under different sintering temperatures. J Mater Sci: Mater Electron 32, 4592–4628 (2021). https://doi.org/10.1007/s10854-020-05200-x

Download citation