Skip to main content
Log in

Temperature and excitation power dependence of photoluminescence and electrical characterization of Ni‐passivated porous silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A porous silicon (PS) layer was obtained on p-Si (100) substrate by electrochemical anodization and Ni-porous silicon nanocomposites (Ni–PS) were elaborated by the electrodeposition method using nickel chloride aqueous solution. PS and Ni–PS samples were analyzed by X-ray diffraction (XRD). The XRD patterns revealed the presence of nickel elements in the PS matrix. The investigation by Photoluminescence spectroscopy (PL) enabled us to exam the evolutions of PL peak position, PL intensity, and full width at half maximum (FWHM) as a function of temperature and excitation power density. The modified Arrhenius formula, considering two activation energies, has been used to fit the temperature-dependent integration of PL intensities. PL investigations show that Ni ions cause changes in the recombination process of PS by the creation of new radiative centers as well as the reduction of non-radiative transitions. For Ni–PS nanocomposites, the laser power dependence of the integrated PL intensity shows that the most of transitions are free to bound or bound to bound where as the excitonic transitions are the most dominant in untreated PS. The current–voltage (IV) characteristics of Ag/PS and Ag/Ni–PS Schottky diodes have been examined. The Cheung method was adopted to extract the parameters of the diode. Experimental results show that the values of ideality factor (n), resistance series (Rs), and barrier height (φb) are affected by the presence of nickel in the porous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  CAS  Google Scholar 

  2. G. Barillaro, F. Pieri, U. Mastromatteo, Opt. Mater. 17, 91–94 (2001)

    Article  CAS  Google Scholar 

  3. M. Sharifi, N. Naderi, P. Fallahazad, M.J. Eshraghi, Sens. Actuators A 3101, 112065 (2020)

    Article  Google Scholar 

  4. S.M. Hossain, S. Chakraborty, S.K. Dutta, J. Das, H. Saha, J. Lumin. 91, 195–202 (2000) 195.

    Article  CAS  Google Scholar 

  5. Y. Abdi, J. Derakhshandeh, P. Hashemi, S. Mohajerzadeh, F. Karbassian, F. Nayeri, E. Arzi, M.D. Robertson, H. Radamson, Mater. Sci. Eng. B 124–125, 483–487 (2005)

    Article  Google Scholar 

  6. H. Song, Z. Li, H. Chen, Z. Jiao, Z. Yu, Y. Jin, Z. Yang, M. Gong, X. Sun, Appl. Surf. Sci. 54, 5655–5659 (2008)

    Article  Google Scholar 

  7. M. Rahmani, A. Moadhen, M.-A. Zaïbi, H. Elhouichet, M. Oueslati, J. Lumin. 128, 1763–1766 (2008)

    Article  CAS  Google Scholar 

  8. M.-B. Bouzourâa, M. Rahmani, M.-A. Zaïbi, N. Lorrain, L. Hajji, M. Oueslati, J. Lumin. 143, 521–525 (2013)

    Article  Google Scholar 

  9. I. Haddadi, S. Ben Amor, R. Bousbih, S. Elwhibi, A. Bardaoui, W. Dimassi, H. Ezzaouia, J. Lumin. 173, 257–262 (2016)

    Article  CAS  Google Scholar 

  10. S. Amdouni, M. Rahmani, M.-A. Zaïbi, M. Oueslati, J. Lumin. 157, 93–97 (2015)

    Article  CAS  Google Scholar 

  11. C.F. Ramirez-Gutierrez, A. Medina-Herrera, L. Tirado-Mejía, L.F. Zubieta-Otero, O. Auciello, M.E. Rodriguez-Garcia, J. Lumin. 201, 11–17 (2018)

    Article  CAS  Google Scholar 

  12. A. Shimizu, Y. Yamada, G. Izutsu, K. Yano, M. Kasuga, Jpn. J. Appl. Phys. 35, 276–279 (1996)

    Article  Google Scholar 

  13. S. Mitra, V. Švrček, M. Macias-Montero, T. Velusamy, D. Mariotti, Sci. Rep. 6, 27727 1–9 (2016)

    Article  Google Scholar 

  14. M. Rahmani, A. Moadhen, M.-A. Zaïbi, A. Lusson, H. Elhouichet, M. Oueslati, J. Alloy Compds. 485, 422–426 (2009)

    Article  CAS  Google Scholar 

  15. S. Mahato, J. Puigdollers, Physica B 530, 327–335 (2018)

    Article  CAS  Google Scholar 

  16. K. Daoudi, B. Canut, M.G. Blanchin, C.S. Sandu, V.S. Teodorescu, J.A. Roger, J. Mater. Sci. Eng. 21, 313–317 (2002)

    Article  Google Scholar 

  17. A.A. Ensafi, F. Rezaloo, B. Rezaei, Sens. Actuators B 231, 239–244 (2016)

    Article  CAS  Google Scholar 

  18. A.L. Ortiz, F. Sanchez-Bajo, F.L. Cumbrera, F. Guiberteau, Mater. Lett. 49, 137–145 (2001)

    Article  CAS  Google Scholar 

  19. W.-R. Liu, N.-L. Wu, D.-T. Shieh, H.-C. Wu, M.-H. Yang, C. Korepp, J.O. Besenhard, M. Winter, J. Electrochem. Soc. 154(2), 97–102 (2007)

    Article  Google Scholar 

  20. M. Heuer, T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, A.M. Minor, E.R. Weber, J. Appl. Phys. 101, 1–6 (2007)

    Article  Google Scholar 

  21. M. Vivona, G. Greco, F. Giannazzo, R. Lo Nigro, S. Rascunà, M. Saggio, F. Roccaforte, Semicond. Sci. Technol. 29, 075018 (2014)

    Article  Google Scholar 

  22. M. Das, D. Sarkar, Bull. Mater. Sci. 39, 1671–1676 (2016)

    Article  CAS  Google Scholar 

  23. D.K. Ulfa, M. Ulfa, Orient. J. Chem. 35, 20–27 (2019)

    Article  CAS  Google Scholar 

  24. V. Alex, S. Finkbeiner, J. Weber, J. Appl. Phys. 79, 6943–6946 (1996)

    Article  CAS  Google Scholar 

  25. M.A. Marzouk, S.M. Abo-Naf, H.A. Zayed, N.S. Hassan, J. Mater. Res. Technol. 5, 226–233 (2016)

    Article  CAS  Google Scholar 

  26. M. Nabil, M. Elnouby, N. Gayeh, A.H. Sakr, H.A. Motaweh, Mater. Sci. Eng. 248, 1–7 (2017)

    Google Scholar 

  27. M. Rahmani, H. Ajlani, A. Moadhen, M.-A. Zaïbi, L. Haji, M. Oueslati, J. Alloy Compds. 506, 496–499 (2010)

    Article  CAS  Google Scholar 

  28. J.C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestain, R.M. Macfarlane, Phys. Rev. B 45, 14171 (1992)

    Article  CAS  Google Scholar 

  29. J. Krustok, H. Collan, K. Hjelt, J. Appl. Phys. 81, 1442–1445 (1997)

    Article  CAS  Google Scholar 

  30. M. Rahmani, A. Moadhen, A.M. Kamkoum, M.-A. Zaïbi, R. Chtourou, L. Haji, M. Oueslati, Physica B 407, 472–476 (2012)

    Article  CAS  Google Scholar 

  31. C. Amri, H. Ezzaouia, R. Ouertani, Chin. J. Phys. 63, 325–336 (2020)

    Article  CAS  Google Scholar 

  32. A. Ben Daly, H. Riahi, F. Bernardot, T. Barisien, E. Galopin, A. Lemaître, M.A. Maaref, C. Testelin, Superlatt. Microstruct. 104, 321–330 (2017)

    Article  CAS  Google Scholar 

  33. M. Rocchia, A.M. Rossi, S. Borini, L. Boarino, G. Amato, Phys. Status Solidi A 202, 1658–1661 (2005)

    Article  CAS  Google Scholar 

  34. T. Schmidt, K. Lischka, W. Zulehner, Phys. Rev. B 45, 8989–8994 (1992)

    Article  CAS  Google Scholar 

  35. K. Colbow, Phys. Rev. 141, 742–749 (1966)

    Article  CAS  Google Scholar 

  36. A.M. Mansour, I.S. Yahia, I.M. El-Radaf, Mater. Res. Express 5, 076406 (2018)

    Article  Google Scholar 

  37. A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, Synth. Met. 161, 2135–2143 (2011)

    Article  CAS  Google Scholar 

  38. E.A. Guliants, C. Ji, Y.J. Song, W.A. Anderson, Appl. Phys. Lett. 80, 1474 (2002)

    Article  CAS  Google Scholar 

  39. S. Alagha, A. Shik, H.E. Ruda, I. Saveliev, K.L. Kavanagh, S.P. Watkins, J. Appl. Phys. 121, 174301 (2017)

    Article  Google Scholar 

  40. M. Arif, M. Yun, S. Gangopadhyay, K. Ghosh, L. Fadiga, F. Galbrecht, U. Scherf, S. Guha, Phys. Rev. B 75, 195202 (2007)

    Article  Google Scholar 

  41. H. Spahr, S. Montzka, J. Reinker, F. Hirschberg, W. Kowalsky, H.-H. Johannes, J. Appl. Phys. 114, 183714 (2013)

    Article  Google Scholar 

  42. Y. Tian, L. Jiang, X. Zhang, G. Zhang, Q. Zhu, AIP Adv. 8, 035105 (2018)

    Article  Google Scholar 

  43. M. Zhu, T. Cui, K. Varahramyan, Microelectron. Eng. 75, 269–274 (2004)

    Article  CAS  Google Scholar 

  44. Y. Badali, Y. Azizian-Kalandaragh, İ Uslu, Ş Altindal, J. Mater. Sci. 31, 8033–8042 (2020)

    CAS  Google Scholar 

  45. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)

    Article  CAS  Google Scholar 

  46. F.S. Kaya, S. Duman, O. Baris, B. Gurbulak, Mater. Sci. Semicond. Process. 121, 105325 (2021)

    Article  CAS  Google Scholar 

  47. Ş Karataş, A. Türüt, Vacuum 74, 45–53 (2004)

    Article  Google Scholar 

  48. M. Gassoumi, Phys. Solid State 62, 636–641 (2020)

    Article  CAS  Google Scholar 

  49. D. Donoval, M. Barus, M. Zdimal, Solid State Electron. 34, 1365 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pr. Radhouane Chtourou (Nanomaterials Laboratory of Renewable Energy Systems—Research center of Borg-Cedria, Haman Lif—Tunisia) for XRD analysis. The authors acknowledge also Pr. Meherzi Oueslati and Dr. Hosni Ajlani for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahmani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Amdouni, S., Zaïbi, MA. et al. Temperature and excitation power dependence of photoluminescence and electrical characterization of Ni‐passivated porous silicon. J Mater Sci: Mater Electron 32, 4321–4330 (2021). https://doi.org/10.1007/s10854-020-05175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05175-9

Navigation