A pattern reconfigurable graphene-based Yagi-Uda antenna with TM01δ mode generation for THz applications

Abstract

This paper demonstrates an array of graphene-based Yagi-Uda antennas with pattern reconfigurability. The array consists of four identical Yagi-Uda antennas placed on a non-radiating graphene ring. The antenna dipoles are excited using a silver nanostrip feedline connected through a vias to the graphene ring. The reconfigurability is achieved by disabling the Yagi-Uda array elements systematically. The proposed antenna operates at the 2.5 THz resonant frequency with 12.38% operating wide bandwidth. The antenna provides the reconfigurable end-fire radiation pattern with 13.67 dB front-to-back ratio (FBR) and high directivity of 9.78 dBi. Furthermore, the resonating frequency can be changed by varying the external biasing voltage of graphene material. The antenna operates with the generation of \(T{M}_{01\delta }\) mode. The antenna with the optimised dimensions is designed and numerically analysed for the THz applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    J. Costantine, Y. Tawk, S.E. Barbin, C.G. Christodoulou, Reconfigurable antennas: design and applications. Proc. IEEE 103(3), 424–437 (2015)

    Article  Google Scholar 

  2. 2.

    Y. Jiang, N.C. Laurenciu, H. Wang, S.D. Cotofana, Graphene nanoribbon based complementary logic gates and circuits. IEEE Trans. Nanotechnol. 18, 287–298 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2016)

    Article  CAS  Google Scholar 

  4. 4.

    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    A. Wilke, T. Mizokuro, R.P. Blum, J.P. Rabe, N. Koch, Electronic properties of Cu-phthalocyanine/fullerene planar and bulk hetereojunctions on PEDOT:PSS. IEEE J. Sel. Top. Quantum Electron. 16(6), 1732–1737 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Chai, P.C.H. Chan, Y. Fu, Y.C. Chuang, C.Y. Liu, Electromigration studies of Cu/carbon nanotube composite interconnects using Blech structure. IEEE Electron Device Lett. 29(9), 1001–1003 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, T. Oku, Principle design and data of graphite components. Nucl. Eng. Des. 233(1–3), 251–260 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    K.S. Novoselov et al., Electronic properties of graphene. Phys. Status Solidi Basic Res. 244(11), 4106–4111 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    J. Nilsson, A.H.C. Neto, F. Guinea, N.M.R. Peres, Electronic properties of graphene multilayers. Phys. Rev. Lett. 97(26), 1–4 (2006)

    Article  CAS  Google Scholar 

  11. 11.

    Z. Illyefalvi-Vitez, Graphene and its potential applications in electronics packaging—a review, in Proceedings of the 36th International Spring Seminar on Electronics Technology. (IEEE, Alba Iulia, 2013), pp. 323–328

    Google Scholar 

  12. 12.

    V. Ryzhii et al., Comparison of intersubband quantum-well and interband graphene-layer infrared photodetectors. IEEE J. Quantum Electron. 54(2), 1–8 (2018)

    Article  Google Scholar 

  13. 13.

    F. Xia, H. Yan, P. Avouris, The interaction of light and graphene: basics, devices, and applications. Proc. IEEE 101(7), 1717–1731 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3, 1–8 (2013)

    Google Scholar 

  15. 15.

    Y.H. Chen, H.S. Tao, D.X. Yao, W.M. Liu, Kondo metal and ferrimagnetic insulator on the triangular kagome lattice. Phys. Rev. Lett. 108(24), 1–5 (2012)

    Article  CAS  Google Scholar 

  16. 16.

    A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99(18), 2–5 (2007)

    Article  CAS  Google Scholar 

  17. 17.

    Z.F. Jiang, R.D. Li, S.C. Zhang, W.M. Liu, Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys. Rev. B Condens. Matter Mater. Phys. 72(4), 1–5 (2005)

    Google Scholar 

  18. 18.

    J. Li, A. Salandrino, N. Engheta, Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Phys. Rev. B Condens. Matter Mater. Phys. 79(19), 1–5 (2009)

    Google Scholar 

  19. 19.

    R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)

    Article  Google Scholar 

  20. 20.

    M. Faridani, R.A. Sadeghzadeh, M. Khatir, Terahertz dual-band dipole antenna with novel small flat quartz-copper reflector. Optik (Stuttg) 136, 336–340 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    M. Dragoman, A.A. Muller, D. Dragoman, F. Coccetti, R. Plana, Terahertz antenna based on graphene. J. Appl. Phys. 107(10), 1–4 (2010)

    Article  CAS  Google Scholar 

  22. 22.

    P.Y. Chen, C. Argyropoulos, A. Alu, Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans. Antennas Propag. 61(4), 1528–1537 (2013)

    Article  Google Scholar 

  23. 23.

    B. Sensale-Rodriguez et al., Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780–787 (2012)

    Article  CAS  Google Scholar 

  24. 24.

    D. Correas-Serrano, J.S. Gomez-Diaz, J. Perruisseau-Carrier, A. Alvarez-Melcon, Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 13(6), 1145–1153 (2014)

    Article  CAS  Google Scholar 

  25. 25.

    F. Rana, Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7(1), 91–99 (2008)

    Article  Google Scholar 

  26. 26.

    J. Tao, X. Yu, B. Hu, A. Dubrovkin, Q.J. Wang, Graphene-based tunable Bragg reflector with a broad bandwidth. Conf. Lasers Electro-Optics Eur. Tech. Dig. 2014(2), 271–274 (2014)

    Google Scholar 

  27. 27.

    J. Zhang, J. Tian, L. Li, A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photonics J. 10(2), 1–12 (2018)

    Google Scholar 

  28. 28.

    L. Bandhu, G.R. Nash, Controlling the properties of surface acoustic waves using graphene. Nano Res. 9(3), 685–691 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    X. Luo, T. Qiu, W. Lu, Z. Ni, Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R Rep. 74(11), 351–376 (2013)

    Article  Google Scholar 

  30. 30.

    L. Han, C. Wang, X. Chen, W. Zhang, Compact frequency-reconfigurable slot antenna for wireless applications. IEEE Antennas Wirel. Propag. Lett. 15, 1795–1798 (2016)

    Article  Google Scholar 

  31. 31.

    A. Iqbal et al., Frequency and pattern reconfigurable antenna for emerging wireless communication systems. Electronics 8(4), 3–14 (2019)

    Article  Google Scholar 

  32. 32.

    L.H. Trinh, T.N. Le, R. Staraj, F. Ferrero, L. Lizzi, A pattern-reconfigurable slot antenna for IoT network concentrators. Electronics 6(4), 1–7 (2017)

    Article  Google Scholar 

  33. 33.

    C. Kittiyanpunya, M. Krairiksh, A Four-Beam Pattern Reconfigurable Yagi-Uda Antenna. IEEE Trans. Antennas propag. 61(12), 6210–6214 (2013)

    Article  Google Scholar 

  34. 34.

    J.D. Kraus, R.J. Marhefka, A.S. Khan, Antennas and Wave Propagation, 4th edn. (Tata McGraw Hill Education Private Limited, New York, 2006).

    Google Scholar 

  35. 35.

    R. Bhattacharya, R. Garg, T.K. Bhattacharyya, Design of a PIFA-driven compact Yagi-type pattern diversity antenna for handheld devices. IEEE Antennas Wirel. Propag. Lett. 15, 255–258 (2016)

    Article  Google Scholar 

  36. 36.

    R. Chopra, G. Kumar, Uniplanar microstrip antenna for endfire radiation. IEEE Trans. Antennas Propag. 67(5), 3422–3426 (2019)

    Article  Google Scholar 

  37. 37.

    Y. Luo et al., Graphene-based multi-beam reconfigurable THz antennas. IEEE Access 7, 30802–30808 (2019)

    Article  Google Scholar 

  38. 38.

    G.H. Surface, C. Wang, Y. Yao, J. Yu, X. Chen, 3d beam reconfigurable THz antenna with graphene-based high-impedance surface. Electronics 8(11), 1291 (2019)

    Article  CAS  Google Scholar 

  39. 39.

    Y. Huang, L.S. Wu, M. Tang, J. Mao, Design of a beam reconfigurable thz antenna with graphene-based switchable high-impedance surface. IEEE Trans. Nanotechnol. 11(4), 836–842 (2012)

    Article  Google Scholar 

  40. 40.

    P. Cheong et al., Yagi–Uda antenna for multiband radar applications. IEEE Antennas Wirel. Propag. Lett. 13, 1065–1068 (2014)

    Article  Google Scholar 

  41. 41.

    Z. Xu, X. Dong, J. Bornemann, Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014)

    Article  Google Scholar 

  42. 42.

    F. Liang, Z.Z. Yang, Y.X. Xie, H. Li, D. Zhao, B.Z. Wang, Beam-scanning microstrip Quasi-Yagi-Uda antenna based on hybrid metal-graphene materials. IEEE Photonics Technol. Lett. 30(12), 1127–1130 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    W.T. Sethi, H. Vettikalladi, H. Fathallah, M. Himdi, Nantenna for standard 1550 nm optical communication systems. Int. J. Antennas Propag. (2016). https://doi.org/10.1155/2016/5429510

    Article  Google Scholar 

  44. 44.

    G. Varshney, S. Gotra, J. Kaur, V.S. Pandey, R.S. Yaduvanshi, Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications. Semicond. Sci. Technol. 34(7), 07LT01 (2019)

    CAS  Article  Google Scholar 

  45. 45.

    G. Ding, C. Clavero, D. Schweigert, M. Le, Thickness and microstructure effects in the optical and electrical properties of silver thin films. AIP Adv. 5(11), 117234 (2015)

    Article  CAS  Google Scholar 

  46. 46.

    G.W. Hanson, E. Forati, W. Linz, A.B. Yakovlev, Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: strong electrodynamic effect of dielectric support. Phys Rev B 86, 235440 (2012)

    Article  CAS  Google Scholar 

  47. 47.

    G.W. Hanson, Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2008)

    Article  Google Scholar 

  48. 48.

    D.L. Sounas, C. Caloz, Electromagnetic nonreciprocity and gyrotropy of graphene. Appl. Phys. Lett. 98(2), 2011–2014 (2011)

    Article  CAS  Google Scholar 

  49. 49.

    A. Ghahremani, G. Moradi, Planar tunable graphene based low-pass filter in the terahertz band. Appl. Opt. 57(27), 7823 (2018)

    CAS  Article  Google Scholar 

  50. 50.

    G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    Article  CAS  Google Scholar 

  51. 51.

    G. Varshney, A. Pradesh, Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31(13), 135208 (2020)

    CAS  Article  Google Scholar 

  52. 52.

    Y. Yao, X. Cheng, S.W. Qu, J. Yu, X. Chen, Graphene-metal based tunable band-pass filters in the terahertz band. IET Microwaves, Antennas Propag. 10(14), 1570–1575 (2016)

    Article  Google Scholar 

  53. 53.

    M. Materials, F. Liang, Z. Yang, Y. Xie, H. Li, D. Zhao, Beam-scanning microstrip Quasi-Yagi–Uda antenna based on hybrid. IEEE Photonics Technol. Lett. 30(12), 1127–1130 (2018)

    Article  Google Scholar 

  54. 54.

    G. Varshney, S. Gotra, V.S. Pandey, R.S. Yaduvanshi, Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun. Netw. 21, 100246 (2019)

    Article  Google Scholar 

  55. 55.

    G. Varshney, A. Verma, V.S. Pandey, R.S. Yaduvanshi, R. Bala, A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Opt. Mater. (Amst) 85, 456–463 (2018)

    CAS  Article  Google Scholar 

  56. 56.

    A. Vakil, N. Engheta, Transformation Optics Using Graphene: One-Atom-Thick Ptical Devices Based on Graphene, Ph.D thesis, (2012)

  57. 57.

    V.P. Gusynin, S.G. Sharapov, Transport of Dirac quasiparticles in graphene: hall and optical conductivities. Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245411 (2006)

    Article  CAS  Google Scholar 

  58. 58.

    S. Abadal, I. Llatser, A. Mestres, H. Lee, E. Alarcon, A. Cabellos-Aparicio, Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications. IEEE Trans. Commun. 63(4), 1470–1482 (2015)

    Article  Google Scholar 

  59. 59.

    I. Llatser et al., Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering 21(4), 946–953 (2012)

    Google Scholar 

  60. 60.

    P.A. George et al., Spectroscopy of the carrier relaxation epitaxial graphene. Nano Lett. 8(12), 17–20 (2008)

    Article  CAS  Google Scholar 

  61. 61.

    N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, F. Mauri, Current-voltage characteristics of graphene devices: interplay between Zener-Klein tunneling and defects. Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 1–10 (2010)

    Article  CAS  Google Scholar 

  62. 62.

    V. Ryzhii, A. Satou, T. Otsuji, Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101(2), 4–9 (2007)

    Article  CAS  Google Scholar 

  63. 63.

    J.R.F. Lima, Controlling the energy gap of graphene by Fermi velocity engineering. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379(3), 179–182 (2015)

    CAS  Google Scholar 

  64. 64.

    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84(3), 1067–1125 (2012)

    CAS  Article  Google Scholar 

  65. 65.

    C. Hwang et al., Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 2–5 (2012)

    Article  CAS  Google Scholar 

  66. 66.

    G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7(5), 704–716 (2014)

    CAS  Article  Google Scholar 

  67. 67.

    Y. Wu et al., Characterization of CVD graphene permittivity and conductivity in micro-/millimeter wave frequency range. AIP Adv. 6(9), 095014 (2016)

    Article  CAS  Google Scholar 

  68. 68.

    P.G. Bartley, S.B. Begley, A new technique for the determination of the complex permittivity and permeability of materials, in 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. (IEEE, Austin, 2010), pp. 54–57

    Google Scholar 

  69. 69.

    D. Kajffz, A. Glisson, J. James, M. Afsar, Computed modal field distributions for isolated dielectric resonators. IEEE Trans. Microw. Theory Tech. MTT-32(12), 819–827 (1984)

    Google Scholar 

  70. 70.

    L. Zou, S. Member, D. Abbott, C. Fumeaux, S. Member, Omnidirectional cylindrical dielectric resonator antenna with dual polarization. IEEE Antennas Wirel. Propag. Lett. 11, 515–518 (2012)

    Article  Google Scholar 

  71. 71.

    D. Guha, S. Member, A. Banerjee, S. Member, Higher order mode excitation for high-gain broadside radiation from cylindrical. IEEE Trans. Antennas Propag. 60(1), 71–77 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajesh Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Pandey, V.S. & Kumar, S. A pattern reconfigurable graphene-based Yagi-Uda antenna with TM01δ mode generation for THz applications. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-020-05160-2

Download citation