Influence of Ni doping on physical properties of La0.7Sr0.3FeO3 synthesized by reverse micelle technique

Abstract

In the present work, a series of Ni-doped La0.7Sr0.3FeO3 perovskite nanostructures with chemical composition La0.7Sr0.3Fe1−xNixO3 (x = 0.0, 0.01 and 0.04) were synthesized by the reverse micelle (RM) technique. The X-ray diffraction (XRD) analysis verifies good crystallinity and an orthorhombic crystal structure of the samples. The remarkable growth of the crystallites was observed in increasing the amount of Ni doping. The morphology, topography, and chemical composition were investigated through field emission scanning electron microscope (FESEM) equipped with an energy dispersive X-ray spectrometer (EDS). The FESEM/EDS measurements confirm uniform morphology and interconnected nature of the particles with relevant elements. The Fourier transform infrared (FTIR) spectra further demonstrate the perovskite structure through Fe/Ni–O asymmetric stretching and deformation of Fe/Ni–O–Fe/Ni bending vibrations in the lattice. A systematic reduction in the bandgap (Eg) is noticed upon the Ni doping in La0.7Sr0.3FeO3, as estimated from the UV/visible spectra by employing the Tauc's relation. A distinct behaviour of dielectric properties was revealed as a function of frequency and temperature for all the samples. The dielectric constant (ε′), dielectric loss (tanδ), and ac conductivity (σac) were measured at selected frequencies and temperatures. The results signify that the dielectric nature was frequency-dependent and thermally stimulated. The magnetic properties at room temperature indicate weak ferromagnetism with gradual increase in the maximum magnetization and coercivity with the increase in Ni concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    I.S. Steinberg, V.V. Atuchin, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122956

    Article  Google Scholar 

  2. 2.

    I. Calisir, D.A. Hall, J. Mater. Chem. C 6, 134–146 (2017)

    Article  Google Scholar 

  3. 3.

    E. Bontempi, C. Garzella, S. Valetti, L.E. Depero, J. Eur. Ceram. Soc. 23, 2135–2142 (2003)

    CAS  Article  Google Scholar 

  4. 4.

    H. Falcón, A.E. Goeta, G. Punte, R.E. Carbonio, J. Solid State Chem. 133, 379–385 (1997)

    Article  Google Scholar 

  5. 5.

    H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, J. Phys. D 43, 245002 (2010)

    Article  Google Scholar 

  6. 6.

    Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T.H. Arima, Y. Tokura, Nat. Mater. 8, 558–562 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Wang, X. Yang, L. Lu, X. Wang, Thermochim. Acta 443, 225–230 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    S. Li, L. Jing, W. Fu, L. Yang, B. Xin, H. Fu, Mater. Res. Bull. 42, 203–212 (2007)

    CAS  Article  Google Scholar 

  9. 9.

    K.C. Patil, S.T. Aruna, T. Mimani, Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002)

    CAS  Article  Google Scholar 

  10. 10.

    A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 87, 1952–1958 (2004)

    CAS  Article  Google Scholar 

  11. 11.

    J.W. Fergus, Sens. Actuators B 123, 1169–1179 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    C.Y. Park, D.X. Huang, A.J. Jacobson, L. Hu, C.A. Mims, Solid State Ion. 177, 2227–2233 (2006)

    CAS  Article  Google Scholar 

  13. 13.

    X. Ding, W. Zhu, G. Hua, J. Li, Z. Wu, Electrochim. Acta 163, 204–212 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    S. Feraru, A.I. Borhan, P. Samoila, C. Mita, S. Cucu-Man, A.R. Iordan, M.N. Palamaru, J. Photochem. Photobiol. A 307, 1–8 (2015)

    Article  Google Scholar 

  15. 15.

    U. Shimony, J.M. Knudsen, Phys. Rev. 144, 361 (1966)

    CAS  Article  Google Scholar 

  16. 16.

    N. Kemik, Y. Takamura, A. Navrotsky, J. Solid State Chem. 184, 2118 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    CAS  Article  Google Scholar 

  18. 18.

    S.S. Maluf, E.Y. Tanabe, P.A.P. Nascente, E.M. Assaf, Top. Catal. 54, 210–218 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    D. Triyono, U. Hanifah, H. Laysandra, Results Phys. 16, 102995 (2020)

    Article  Google Scholar 

  20. 20.

    I.N. Sora, F. Fontana, R. Passalacqua, C. Ampelli, S. Perathoner, G. Centi, F. Parrino, L. Palmisano, Electrochim. Acta 109, 710–715 (2013)

    Article  Google Scholar 

  21. 21.

    A.A. Saad, W. Khan, P. Dhiman, A.H. Naqvi, M. Singh, Electron. Mater. Lett. 9, 77–81 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    A.A.S. Hassan, W. Khan, S. Husain, P. Dhiman, M. Singh, Int. J. Appl. Ceram. Technol. (2020). https://doi.org/10.1111/ijac.13540

    Article  Google Scholar 

  23. 23.

    P.-J. Yao, J. Wang, H.-Y. Du, J.-Q. Qi, Mater. Chem. Phys. 134, 61 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    L.M. Wang, J.H. Lai, J.I. Wu, Y.K. Kuo, C.L. Chang, J. Appl. Phys. 102, 023915 (2007)

    Article  Google Scholar 

  25. 25.

    H.L. Ju, Y.S. Nam, J.E. Lee, H.S. Shin, J. Magn. Magn. Mater. 219, 1–8 (2000)

    CAS  Article  Google Scholar 

  26. 26.

    X. Dong, J. Wang, Q. Cui, G. Liu, W. Yu, Int. J. Chem. 1(1), 13–17 (2009). http://www.ccsenet.org/journal/index.php/ijc/article/view/413

    CAS  Article  Google Scholar 

  27. 27.

    J.A. Khan, M. Qasim, B.R. Singh, S. Singh, M. Shoeb, W. Khan, D. Das, A.H. Naqvi, Spectrochim. Acta A 109, 313–321 (2013)

    CAS  Article  Google Scholar 

  28. 28.

    V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Lin, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, J. Solid State Chem. 187, 159–164 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    J. Chandradass, K.H. Kim, Mater (Chem, Phys, 2010).

    Google Scholar 

  30. 30.

    K. Li, D. Wang, F. Wu, T. Xie, T. Li, Mater. Chem. Phys. 64, 269–272 (2000)

    CAS  Article  Google Scholar 

  31. 31.

    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428–435 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    J.I. Pankove, P. Aigrain, Phys. Rev. 126, 956 (1962)

    CAS  Article  Google Scholar 

  33. 33.

    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    CAS  Article  Google Scholar 

  34. 34.

    M. Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, K.G.M. Nair, J. Appl. Phys. 115, 184104 (2014)

    Article  Google Scholar 

  35. 35.

    S. Havriliak, S. Negami, Polymer (Guildf) 8, 161–210 (1967)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Jia, H. Luo, S.W. Or, Y. Wang, H.L.W. Chan, J. Appl. Phys. 94, 263504 (2009)

    Google Scholar 

  37. 37.

    S. Mehraj, M. Shahnawaze Ansari, A. Alimuddin, Phys. B 430, 106–113 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    N. Zarrin, S. Husain, Appl. Phys. A 124, 730 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    E.A. Nforna, Int. J. Eng. Res. Technol. 4, 907–914 (2015)

    Google Scholar 

  40. 40.

    P.C.A. Brito, R.F. Gomes, J.G.S. Duque, M.A. Macêdo, Phys. B 384, 91–93 (2006)

    CAS  Article  Google Scholar 

  41. 41.

    A. Mahmood, M.F. Warsi, M.N. Ashiq, M. Ishaq, J. Magn. Magn. Mater. 327, 64–70 (2013)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdullah Ameen Saad Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.A.S., Khan, W., Husain, S. et al. Influence of Ni doping on physical properties of La0.7Sr0.3FeO3 synthesized by reverse micelle technique. J Mater Sci: Mater Electron 32, 3753–3765 (2021). https://doi.org/10.1007/s10854-020-05120-w

Download citation