Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method

Abstract

The pure and Ni-doped CuO nanocrystals were prepared via auto-combustion method and characterized by X-ray diffraction, scanning electron microscope, UV spectroscopy, and vibrating sample magnetometer method. The X-ray diffraction patterns of all samples revealed the monoclinic CuO nanocrystals with the nanocrystalline phase. XRD data revealed that the lattice constants of CuO nanocrystals were decreased with increasing Ni concentration which indicate that Ni2+ ions incorporated in CuO lattice. The average crystallite size of nanocrystals is intended by Scherer’s formula and found in the range of 21–24 nm. The variation of microstrain was investigated for pure and Ni-doped CuO samples. The SEM images exhibited that the prepared particles have spherical-like structure. The optical absorption spectra of the nanoparticles obtained using UV–Vis spectrophotometer show the blue-shift with increasing Ni doping. The optical band-gap energy increased with increasing Ni doping concentration due to the sp-d exchange interaction between d localized electrons of Ni. Magnetic measurement showed a ferromagnetic behavior at room temperature. Structural and magnetic properties are also discussed in detail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature 408, 944–946 (2000)

    CAS  Article  Google Scholar 

  2. 2.

    J. Cao, J. Wu, Mater. Sci. Eng. 71, 35–52 (2011)

    Article  Google Scholar 

  3. 3.

    C. Jing, Y. Jiang, W. Bai, J. Chu, A. Liu, J. Magn. Magn. Mater. 322, 2395–2400 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Yang, Y. Cheng, Y. Liu, X. Ding, Y.X. Wang, Y.J. Zhang, H.L. Liu, Solid State Commun. 149, 1164–1167 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Science 291, 854–856 (2001)

    CAS  Article  Google Scholar 

  6. 6.

    N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, R.G. Wilson, Appl. Phys. Lett. 78, 3475–3477 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    I. Singh, R.K. Bedi, Appl. Surf. Sci. 257, 7592–7599 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    R. Sahay, J. Sundaramurthy, P. SureshKumar, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, J. Solid State Chem. 186, 261–267 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    L. Zheng, X. Liu, Mater. Lett. 61, 2222–2226 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    Z. Gao, X. Liang, T. Pereira, R. Scaffaro, H.T. Hahn, Compos. Sci. Technol. 67, 2036–2044 (2007)

    Article  Google Scholar 

  12. 12.

    S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloys Compd. 724, 456–464 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    M.K. Verma, V. Gupta, Sens. Actuators, B 166–167, 378–385 (2012)

    Article  Google Scholar 

  14. 14.

    H. Zou, S. Chen, Z. Liu, W. Lin, Powder Technol. 207, 238–244 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    W.-Y. Sung, W.-J. Kim, S.-M. Lee, H.-Y. Lee, Y.-H. Kim, K.-H. Park, S. Lee, Vacuum 81, 851–856 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    T. Jarlborg, Physica C 454, 5–14 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    Z. Yin, Y. Ding, Q. Zhang, L. Guan, Electrochem. Commun. 20, 40–43 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Phys. Lett. A 375, 180–182 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    L.M. Dwivedi, N. Shukla, K. Baranwal, S. Gupta, S. Siddique, V. Singh, J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01779-7

    Article  Google Scholar 

  20. 20.

    S.G. Bahoosh, A.T. Appostolov, I.N. Appostolova, J.M. Wesselinowa, Phys. Lett. A 376, 2252–2255 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    D.P. Joseph, C. Venkateswaran, J. Korean Phys. Soc. 61, 449–454 (2012)

    Article  Google Scholar 

  22. 22.

    D. Shang, K. Yu, Y. Zhang, J. Xu, J. Wu, Y.E. Xu, L. Li, Z. Zhu, Appl. Surf. Sci. 255, 4093 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Nanoscale Res. Lett. 5, 769 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    S. Hussain, A. Mumtaz, S. Hasanain, M. Usman, J. Appl. Phys. 111, 023908 (2012)

    Article  Google Scholar 

  25. 25.

    G.N. Rao, Y.D. Yao, J.W. Chen, IEEE Trans. Magn. 41, 3409 (2005)

    CAS  Article  Google Scholar 

  26. 26.

    A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Phys. Rev. B. 64, 174420 (2001)

    Article  Google Scholar 

  27. 27.

    S. Dolai, S.N. Sarangi, S. Hussain, R. Bhar, A.K. Pal, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.02.005

    Article  Google Scholar 

  28. 28.

    Y. Gülen, F. Bayansal, B. Şahin, H.A. Çetinkara, H.S. Güder, Ceram. Int. 39, 6475 (2013)

    Article  Google Scholar 

  29. 29.

    S. Horzum, A. Yildiz, N. Serin, T. Serin, Philos. Mag. 93, 3110–3117 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    S.K. Kuanr, S. Nayak, K.S. Babu, Mater. Sci. Semicond. Process. 71, 268 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Mater. Sci. Semicond. Process. 17, 110 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    S. Sen, S.K. Halder, S.P. Gupta, J. Phys. Soc. Jpn. 38, 1641–1647 (1975)

    CAS  Article  Google Scholar 

  33. 33.

    K.M. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, M.V.A. Rai, Physica E 119, 114033 (2020)

    Article  Google Scholar 

  34. 34.

    M. Chuai, Q. Zhao, T. Yang, Y. Luo, M. Zhang, Mater. Lett. 161, 205–207 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Phys. B 406, 3956–3962 (2011)

    CAS  Article  Google Scholar 

  36. 36.

    S. Al-Amri, M.S. Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, A. Memic, Curr. Nanosci. 11, 191–197 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Phys. Rev. B 64, 174420 (2001)

    Article  Google Scholar 

  38. 38.

    S. Rehman, A. Mumtaz, S. Hasanain, J. Nano. Res. 13, 2497 (2011)

    CAS  Article  Google Scholar 

  39. 39.

    C.T. Meneses, J.G.S. Duque, L.G. Vivas, M. Knobel, J. Non-Cryst.Solids 354, 4830–4832 (2008)

    CAS  Article  Google Scholar 

  40. 40.

    T.I. Arbuzova, I.B. Smolyak, S.V. Naumov, A.A. Samokhvalov, Phys. Solid State 40, 1702–1705 (1998)

    CAS  Article  Google Scholar 

  41. 41.

    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Hussain, J. Nanosci. Nanotechnol. 14(3), 2577–2583 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors, S. P. Kamble would like to acknowledge DST for the availability of instruments purchased under DST-FIST program at Chandmal Tarachand Bora College, Shirur Dist. Pune. (File no. SR/FST/College-068/2017). He is also thankful to the University Research Grant Scheme, BCUD, Savitribai Phule Pune University, Pune, MS India, for the award of the Research Project (File no. 15SCI000551).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. P. Kamble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamble, S.P., Mote, V.D. Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-020-05106-8

Download citation