Skip to main content
Log in

Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure and Ni-doped CuO nanocrystals were prepared via auto-combustion method and characterized by X-ray diffraction, scanning electron microscope, UV spectroscopy, and vibrating sample magnetometer method. The X-ray diffraction patterns of all samples revealed the monoclinic CuO nanocrystals with the nanocrystalline phase. XRD data revealed that the lattice constants of CuO nanocrystals were decreased with increasing Ni concentration which indicate that Ni2+ ions incorporated in CuO lattice. The average crystallite size of nanocrystals is intended by Scherer’s formula and found in the range of 21–24 nm. The variation of microstrain was investigated for pure and Ni-doped CuO samples. The SEM images exhibited that the prepared particles have spherical-like structure. The optical absorption spectra of the nanoparticles obtained using UV–Vis spectrophotometer show the blue-shift with increasing Ni doping. The optical band-gap energy increased with increasing Ni doping concentration due to the sp-d exchange interaction between d localized electrons of Ni. Magnetic measurement showed a ferromagnetic behavior at room temperature. Structural and magnetic properties are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature 408, 944–946 (2000)

    Article  CAS  Google Scholar 

  2. J. Cao, J. Wu, Mater. Sci. Eng. 71, 35–52 (2011)

    Article  Google Scholar 

  3. C. Jing, Y. Jiang, W. Bai, J. Chu, A. Liu, J. Magn. Magn. Mater. 322, 2395–2400 (2010)

    Article  CAS  Google Scholar 

  4. J.H. Yang, Y. Cheng, Y. Liu, X. Ding, Y.X. Wang, Y.J. Zhang, H.L. Liu, Solid State Commun. 149, 1164–1167 (2009)

    Article  CAS  Google Scholar 

  5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Science 291, 854–856 (2001)

    Article  CAS  Google Scholar 

  6. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, R.G. Wilson, Appl. Phys. Lett. 78, 3475–3477 (2001)

    Article  CAS  Google Scholar 

  7. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  CAS  Google Scholar 

  8. I. Singh, R.K. Bedi, Appl. Surf. Sci. 257, 7592–7599 (2011)

    Article  CAS  Google Scholar 

  9. R. Sahay, J. Sundaramurthy, P. SureshKumar, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, J. Solid State Chem. 186, 261–267 (2012)

    Article  CAS  Google Scholar 

  10. L. Zheng, X. Liu, Mater. Lett. 61, 2222–2226 (2007)

    Article  CAS  Google Scholar 

  11. Z. Gao, X. Liang, T. Pereira, R. Scaffaro, H.T. Hahn, Compos. Sci. Technol. 67, 2036–2044 (2007)

    Article  Google Scholar 

  12. S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloys Compd. 724, 456–464 (2017)

    Article  CAS  Google Scholar 

  13. M.K. Verma, V. Gupta, Sens. Actuators, B 166–167, 378–385 (2012)

    Article  Google Scholar 

  14. H. Zou, S. Chen, Z. Liu, W. Lin, Powder Technol. 207, 238–244 (2011)

    Article  CAS  Google Scholar 

  15. W.-Y. Sung, W.-J. Kim, S.-M. Lee, H.-Y. Lee, Y.-H. Kim, K.-H. Park, S. Lee, Vacuum 81, 851–856 (2007)

    Article  CAS  Google Scholar 

  16. T. Jarlborg, Physica C 454, 5–14 (2007)

    Article  CAS  Google Scholar 

  17. Z. Yin, Y. Ding, Q. Zhang, L. Guan, Electrochem. Commun. 20, 40–43 (2012)

    Article  CAS  Google Scholar 

  18. W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Phys. Lett. A 375, 180–182 (2010)

    Article  CAS  Google Scholar 

  19. L.M. Dwivedi, N. Shukla, K. Baranwal, S. Gupta, S. Siddique, V. Singh, J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01779-7

    Article  Google Scholar 

  20. S.G. Bahoosh, A.T. Appostolov, I.N. Appostolova, J.M. Wesselinowa, Phys. Lett. A 376, 2252–2255 (2012)

    Article  CAS  Google Scholar 

  21. D.P. Joseph, C. Venkateswaran, J. Korean Phys. Soc. 61, 449–454 (2012)

    Article  Google Scholar 

  22. D. Shang, K. Yu, Y. Zhang, J. Xu, J. Wu, Y.E. Xu, L. Li, Z. Zhu, Appl. Surf. Sci. 255, 4093 (2009)

    Article  CAS  Google Scholar 

  23. D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Nanoscale Res. Lett. 5, 769 (2010)

    Article  CAS  Google Scholar 

  24. S. Hussain, A. Mumtaz, S. Hasanain, M. Usman, J. Appl. Phys. 111, 023908 (2012)

    Article  Google Scholar 

  25. G.N. Rao, Y.D. Yao, J.W. Chen, IEEE Trans. Magn. 41, 3409 (2005)

    Article  CAS  Google Scholar 

  26. A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Phys. Rev. B. 64, 174420 (2001)

    Article  Google Scholar 

  27. S. Dolai, S.N. Sarangi, S. Hussain, R. Bhar, A.K. Pal, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.02.005

    Article  Google Scholar 

  28. Y. Gülen, F. Bayansal, B. Şahin, H.A. Çetinkara, H.S. Güder, Ceram. Int. 39, 6475 (2013)

    Article  Google Scholar 

  29. S. Horzum, A. Yildiz, N. Serin, T. Serin, Philos. Mag. 93, 3110–3117 (2013)

    Article  CAS  Google Scholar 

  30. S.K. Kuanr, S. Nayak, K.S. Babu, Mater. Sci. Semicond. Process. 71, 268 (2017)

    Article  CAS  Google Scholar 

  31. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Mater. Sci. Semicond. Process. 17, 110 (2014)

    Article  CAS  Google Scholar 

  32. S. Sen, S.K. Halder, S.P. Gupta, J. Phys. Soc. Jpn. 38, 1641–1647 (1975)

    Article  CAS  Google Scholar 

  33. K.M. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, M.V.A. Rai, Physica E 119, 114033 (2020)

    Article  Google Scholar 

  34. M. Chuai, Q. Zhao, T. Yang, Y. Luo, M. Zhang, Mater. Lett. 161, 205–207 (2015)

    Article  CAS  Google Scholar 

  35. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Phys. B 406, 3956–3962 (2011)

    Article  CAS  Google Scholar 

  36. S. Al-Amri, M.S. Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, A. Memic, Curr. Nanosci. 11, 191–197 (2015)

    Article  CAS  Google Scholar 

  37. A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Phys. Rev. B 64, 174420 (2001)

    Article  Google Scholar 

  38. S. Rehman, A. Mumtaz, S. Hasanain, J. Nano. Res. 13, 2497 (2011)

    Article  CAS  Google Scholar 

  39. C.T. Meneses, J.G.S. Duque, L.G. Vivas, M. Knobel, J. Non-Cryst.Solids 354, 4830–4832 (2008)

    Article  CAS  Google Scholar 

  40. T.I. Arbuzova, I.B. Smolyak, S.V. Naumov, A.A. Samokhvalov, Phys. Solid State 40, 1702–1705 (1998)

    Article  CAS  Google Scholar 

  41. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Hussain, J. Nanosci. Nanotechnol. 14(3), 2577–2583 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, S. P. Kamble would like to acknowledge DST for the availability of instruments purchased under DST-FIST program at Chandmal Tarachand Bora College, Shirur Dist. Pune. (File no. SR/FST/College-068/2017). He is also thankful to the University Research Grant Scheme, BCUD, Savitribai Phule Pune University, Pune, MS India, for the award of the Research Project (File no. 15SCI000551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kamble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, S.P., Mote, V.D. Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method. J Mater Sci: Mater Electron 32, 5309–5315 (2021). https://doi.org/10.1007/s10854-020-05106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05106-8

Navigation