New hydrometallurgical approach to obtain uniform antiferromagnetic ferrous chloride cubes from waste tin cans


Tin-plated iron or steel containers are one of the major disposed solid wastes after their utilization to open atmosphere, which leads to create substantial environmental pollution, especially soil and water pollution due to their disposal by landfills methods. These waste iron or steel containers, from the various iron or steel industries, contain a huge amount of iron source, which can be utilized efficiently to synthesis value-added product. In the present study, we have designed a method to grow and stabilize ferrous chloride tetrahydrate (FeCl2·4H2O) from the waste tin-plated iron container. The crystallization rate of FeCl2·4H2O has been controlled by the addition of anti-solvent. The present investigation reveals that with increasing anti-solvent dielectric constant, uniform cubic shape FeCl2·4H2O particles were formed in lesser time without hampering their composition and morphology. The scanning electron micrographs (SEM) show that FeCl2·4H2O particles were cubic in shape with size ranging from 4.2 to 6.7 μm. The purity of FeCl2·4H2O has also been confirmed through magnetic study. M–H plot confirms the antiferromagnetic nature of the synthesized FeCl2·4H2O (TN = 22.4–22.7 K). The observed magnetic moment of FeCl2·4H2O varied from 4.85 to 4.92 μB. The magnetic moment of synthesized FeCl2·4H2O is in close agreement with the theoretical magnetic moment value of Fe2+-free ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    D. Hoornweg, P Bhada-Tata, What a waste: a global review of solid waste management. urban development series; knowledge papers no. 15. (World Bank, Washington, DC. © World Bank, 2012) License: CC BY 3.0 IGO

  2. 2.

    A. Pappu, M. Saxena, S.R. Asolekar, Build. Environ. 42, 2311 (2007)

    Google Scholar 

  3. 3.

    S. Sakai, S.E. Sawell, A.J. Chandler, T.T. Eighmy, D.S. Kosson, J. Vehlow, H.A. van der Sloot, J. Hartlen, O. Hjelmar, Waste Manage. 16, 341 (1996)

    CAS  Google Scholar 

  4. 4.

    S. Kaza, Y. Lisa, P. Bhada-Tata, F. Van Woerden, What a waste 2.0: a global snapshot of solid waste management to 2050. (World Bank, Washington, DC. © World Bank, 2018).

  5. 5.

    T.V. Ramachandra, Saira Indian J. Environ. Health. 45, 255 (2004)

    Google Scholar 

  6. 6.

    J.K. Bhattacharyya, A.V. Shekdar, S.A. Gaikwad, J. Indian Assoc. Environ. Manag. 31, 71 (2004)

    CAS  Google Scholar 

  7. 7.

    A. Agrawal, K.K. Sahu, B.D. Pandey, Resour. Conserv. Recy. 42, 99 (2004)

    Google Scholar 

  8. 8.

    V. Mymrin, V.A. Vaamonde, Miner. Eng. 12, 1399 (1999)

    CAS  Google Scholar 

  9. 9.

    B. Gorai, R.K. Jana, Premchand ***Resour. Conserv. Recy. 39, 299 (2003)

    Google Scholar 

  10. 10.

    M. Romero, M.J. Rincon, Mater. Lett. 31, 67 (1997)

    CAS  Google Scholar 

  11. 11.

    C Woodford, (2008/2019) Iron and steel. Accessed 11 Mar 2020

  12. 12.

    M.J. Rogoff, Solid Waste Recycling and Processing, 2nd edn. (Elsevier, New York, 2014), p. 112

    Google Scholar 

  13. 13.

    R.M. Yoada, D. Chirawurah, P.B. Adongo, BMC Public Health. 14, 697 (2014)

    Google Scholar 

  14. 14.

    A. Myerson, C.A. Burrows, C. Sanzenbacher, P.R. DiBella, Hydrometallurgy 46, 387 (1997)

    Google Scholar 

  15. 15.

    A. López-Delgado, F.J. Alguacil, F.A. López, Hydrometallurgy 45, 97 (1997)

    Google Scholar 

  16. 16.

    S.K. Giri, N.N. Das, G.C. Pradhan, Colloid Surfaces A. 389, 43 (2011)

    CAS  Google Scholar 

  17. 17.

    M.P. Wilson, L. Balmer, M.J. Given, S.J. MacGregor, J.W. Mackersie, I.V. Timoshkin, Miner Eng. 19, 491 (2006)

    CAS  Google Scholar 

  18. 18.

    Z.Z. Ismail, E.A. Al-Hashmi, Waste Manage. 28, 2048 (2008)

    CAS  Google Scholar 

  19. 19.

    E.A. Vestola, M.K. Kuusenaho, H.M. Närhi, O.H. Tuovinen, J.A. Puhakka, J.J. Plumb, A.H. Kaksonen, Hydrometallurgy 103, 74 (2010)

    CAS  Google Scholar 

  20. 20.

    G. Rimaszeki, T. Kulcsar, T. Kekesi, Hydrometallurgy 125, 55 (2012)

    Google Scholar 

  21. 21.

    C. Falagán, B.M. Grail, D.B. Johnson, Miner. Eng. 106, 71 (2017)

    Google Scholar 

  22. 22.

    H. Lee, B. Mishra, Miner. Eng. 123, 1 (2018)

    CAS  Google Scholar 

  23. 23.

    M.M. Devi, K.N. Ojha, A.K. Ganguli, M. Jha, Int. J. Environ. Sci. Technol. 16, 3669 (2019)

    CAS  Google Scholar 

  24. 24.

    A. Chatterjee, L.K. Thompson, S.K. Dey, Magnetochemistry 4, 53 (2018)

    CAS  Google Scholar 

  25. 25.

    J.L. Kneebone, V.E. Fleischauer, S.L. Daifuku, A.A. Shaps, J.M. Bailey, T.E. Iannuzzi, M.L. Neidig, Inorg. Chem. 55, 272 (2016)

    CAS  Google Scholar 

  26. 26.

    P. Jameel, J. Water Pollut. Control Fed. 61, 230 (1989)

    CAS  Google Scholar 

  27. 27.

    H.E. Williams, J. Am. Chem. Soc. 34, 1014 (1912)

    Google Scholar 

  28. 28.

    G. Brauer, Handbook of Preparative Inorganic Chemistry (Academic Press Inc, New York., 1965).

    Google Scholar 

  29. 29.

    J.N. Friend, A Textbook of Inorganic Chemistry, vol. IX (Charles Griffin & Co Ltd, London, 1925).

    Google Scholar 

  30. 30.

    J.W. Mello, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. XIV (Longmans, Green & Co Ltd, London, 1935), pp. 12–13

    Google Scholar 

  31. 31.

    K.H. Gayer, L. Woontner, R.S. Drago, T. Shepherd, Inorg Synth. 5, 179 (1957)

    CAS  Google Scholar 

  32. 32.

    T. Özdemir, C. Öztin, N.S. Kıncal, Chem. Eng. Commun. 193, 548 (2006)

    Google Scholar 

  33. 33.

    A. Karpuz, H. Koçkar, M. Esiyok, Optoelectron Adv. Mater. Rapid Commun 8, 1100 (2014)

    CAS  Google Scholar 

  34. 34.

    A. Karpuz, H. Kockar, M. Uckun, M. Esiyok, J. Magn. Magn. Mater 373, 124 (2015)

    CAS  Google Scholar 

  35. 35.

    M.K. Jha, P.K. Choubey, A.K. Jha, A. Kumari, J.C. Lee, V. Kumar, J. Jeong, Waste Manage. 32, 1919 (2012)

    CAS  Google Scholar 

  36. 36.

    S. Ali, M.A. Farrukh, M. Khaleeq-ur-Rahman, Korean J. Chem. Eng. 30, 2100 (2013)

    CAS  Google Scholar 

  37. 37.

    C. Sharma, M.A. Desai, S.R. Patel, Chem. Pap. 74, 323 (2020)

    CAS  Google Scholar 

  38. 38.

    J.H. Weaver, H.P.R. Frederikse, CRC Hand Book of Chemistry and Physics (CRC Press, Boca Raton, 1977), pp. 12–156

    Google Scholar 

  39. 39.

    A. Narath, Phys. Rev. 139(4A), A1221 (1965)

    Google Scholar 

  40. 40.

    E. Torun, H. Sahin, S.K. Singh, F.M. Peeters, Appl. Phys. Lett. 106, 192404 (2015)

    Google Scholar 

  41. 41.

    G.C. DeFotis, B. Lee, H.A. King, J. Hammann, J. Magn. Magn. Mater. 177, 173 (1998)

    Google Scholar 

  42. 42.

    D. Qilin, T. Jinke, Nanoscale. 5, 7512 (2013)

    Google Scholar 

  43. 43.

    S. Sahoo, C. Binek, W. Kleemann, Phase Transit. 77, 217 (2004)

    CAS  Google Scholar 

  44. 44.

    S.E. Schnatterly, M. Fontana, J. Phys. 33, 691 (1972)

    CAS  Google Scholar 

Download references


All the authors thank DST and INST, Mohali for providing research facilities. SKG thanks to Tata Steel, KKY, and SR thanks to CSIR for providing fellowship to carry out this research work.

Author information




SKG: Data curation, Writing—original draft, Investigation. HS: Data curation, Writing—original draft, Investigation. KKY: Investigation. SR: Investigation. MJ: Conceptualization, Methodology, Writing—review & editing.

Corresponding author

Correspondence to Menaka Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guchhait, S.K., Sammi, H., Yadav, K.K. et al. New hydrometallurgical approach to obtain uniform antiferromagnetic ferrous chloride cubes from waste tin cans. J Mater Sci: Mater Electron 32, 2965–2972 (2021).

Download citation