Effect of Ta doping on the properties of β-Ga2O3 heteroepitaxial films prepared on KTaO3(100) substrates

Abstract

β-Ga2O3 single-crystal films with Ta doping concentrations of 0–1.4 at.% were prepared on KTaO3(100) substrates by metal–organic chemical vapor deposition. Herein, we investigated the influence of Ta doping concentration on the structural and electrical properties of the films. X-ray diffraction results showed that the crystalline quality of the films slightly deteriorated with the increase of doping concentration, and the epitaxial relationship was identified as β-Ga2O3(100)//KTaO3(100) with β-Ga2O3[001]//KTaO3 < 011 > . The chemical composition and surface morphology of the films were characterized using X-ray photoelectron spectroscopy, and atomic force microscopy, respectively. Hall effect measurement determined that the resistivity and carrier concentration of the films were in the range of 14.8 ~ 5.01 × 103 Ω cm and 3.85 × 1016 ~ 3.97 × 1018 cm−3, respectively, whereas the film with 0.2 at.% Ta doping concentration presented the highest Hall mobility of 4.56 cm2 V−1 s−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data contained in this study can be obtained by contacting the authors.

References

  1. 1.

    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 3 (2012). https://doi.org/10.1063/1.3674287

    CAS  Article  Google Scholar 

  2. 2.

    H.P. Zhang, L. Yuan, X.Y. Tang et al., IEEE Trans. Power Electron. 35, 5157 (2020). https://doi.org/10.1109/tpel.2019.2946367

    Article  Google Scholar 

  3. 3.

    D.Q. Hu, S.W. Zhuang, Z.Z. Ma et al., J. Mater. Sci. Mater. Electron. 28, 10997 (2017). https://doi.org/10.1007/s10854-017-6882-x

    CAS  Article  Google Scholar 

  4. 4.

    Y. Qin, S.B. Long, H. Dong et al., Chin. Phys. B 28, 17 (2019). https://doi.org/10.1088/1674-1056/28/1/018501

    CAS  Article  Google Scholar 

  5. 5.

    K. Nishihagi, Z.W. Chen, K. Saito, T. Tanaka, Q.X. Guo, Mater. Res. Bull. 94, 170 (2017). https://doi.org/10.1016/j.materresbull.2017.05.051

    CAS  Article  Google Scholar 

  6. 6.

    K. Girija, S. Thirumalairajan, G.S. Avadhani, D. Mahgalaraj, N. Ponpandian, C. Viswanathan, Mater. Res. Bull. 48, 2296 (2013). https://doi.org/10.1016/j.materresbull.2013.02.047

    CAS  Article  Google Scholar 

  7. 7.

    H.Y. Deng, K.J. Leedle, Y. Miao et al., Adv. Opt. Mater. 8, 6 (2020). https://doi.org/10.1002/adom.201901522

    CAS  Article  Google Scholar 

  8. 8.

    E. Swinnich, M.N. Hasan, K. Zeng et al., Adv. Electron. Mater. 5, 8 (2019). https://doi.org/10.1002/aelm.201800714

    CAS  Article  Google Scholar 

  9. 9.

    D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Acta Phys. Sin. 68, 36 (2019). https://doi.org/10.7498/aps.68.20181845

    CAS  Article  Google Scholar 

  10. 10.

    A.A. Dakhel, J. Mater. Sci. 47, 3034 (2012). https://doi.org/10.1007/s10853-011-6134-z

    CAS  Article  Google Scholar 

  11. 11.

    M.Z. Zhong, Z.M. Wei, X.Q. Meng, F.M. Wu, J.B. Li, J. Alloy. Compd. 619, 572 (2015). https://doi.org/10.1016/j.jallcom.2014.09.070

    CAS  Article  Google Scholar 

  12. 12.

    A.J. Green, K.D. Chabak, E.R. Heller et al., IEEE Electron Device Lett. 37, 902 (2016). https://doi.org/10.1109/led.2016.2568139

    Article  Google Scholar 

  13. 13.

    M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, G. Wagner, ECS J. Solid State Sci. Technol. 6, Q3040 (2017). https://doi.org/10.1149/2.0081702jss

    CAS  Article  Google Scholar 

  14. 14.

    F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, Q.X. Guo, J. Mater. Sci. Mater. Electron. 26, 9624 (2015). https://doi.org/10.1007/s10854-015-3627-6

    CAS  Article  Google Scholar 

  15. 15.

    S. Muller, H. von Wenckstern, D. Splith, F. Schmidt, M. Grundmann, Phys. Status Solidi A 211, 34 (2014). https://doi.org/10.1002/pssa.201330025

    CAS  Article  Google Scholar 

  16. 16.

    J.Y. Wei, F. Shi, J. Mater. Sci. Mater. Electron. 27, 942 (2016). https://doi.org/10.1007/s10854-015-3837-y

    CAS  Article  Google Scholar 

  17. 17.

    D. Gogova, M. Schmidbauer, A. Kwasniewski, CrystEngComm 17, 6744 (2015). https://doi.org/10.1039/c5ce01106j

    CAS  Article  Google Scholar 

  18. 18.

    A.Y. Polyakov, N.B. Smirnov IV., D.G. Shchemerov, S.A. Tarelkin, S.J. Pearton, J. Appl. Phys. 123, 8 (2018). https://doi.org/10.1063/1.5025916

    CAS  Article  Google Scholar 

  19. 19.

    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976). https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  20. 20.

    D. Wang, L.N. He, X.C. Ma, H.D. Xiao, Y. Le, J. Ma, Mater. Charact. 165, 6 (2020). https://doi.org/10.1016/j.matchar.2020.110391

    CAS  Article  Google Scholar 

  21. 21.

    X.K. Liu, K.L. Li, X.J. Sun et al., J. Alloy. Compd. 793, 599 (2019). https://doi.org/10.1016/j.jallcom.2019.04.227

    CAS  Article  Google Scholar 

  22. 22.

    F. Xu, Q. Hu, B. Yang, Micronanoelectron. Technol. 50, 190 (2013). https://doi.org/10.3969/j.issn.1671-4776.2013.03.010

    CAS  Article  Google Scholar 

  23. 23.

    H. Zhang, J.X. Deng, Z.W. Pan, Z.Y. Bai, L. Kong, J.Y. Wang, Vacuum 146, 93 (2017). https://doi.org/10.1016/j.vacuum.2017.09.033

    CAS  Article  Google Scholar 

  24. 24.

    D.A. Zatsepin, D.W. Boukhvalov, A.F. Zatsepin et al., Superlattices Microstruct. 120, 90 (2018). https://doi.org/10.1016/j.spmi.2018.05.027

    CAS  Article  Google Scholar 

  25. 25.

    Y.H. Wu, C.P. Li, M.J. Li et al., Ceram. Int. 42, 10847 (2016). https://doi.org/10.1016/j.ceramint.2016.03.214

    CAS  Article  Google Scholar 

  26. 26.

    J. Liu, L.J. Wang, X.H. Yin, Q. Yu, D. Xu, Ceram. Int. 46, 12059 (2020). https://doi.org/10.1016/j.ceramint.2020.01.247

    CAS  Article  Google Scholar 

  27. 27.

    C.L. Baban, Y. Toyoda, M. Ogita, Jpn. J. Appl. Phys. 43, 7213 (2004). https://doi.org/10.1143/jjap.43.7213

    CAS  Article  Google Scholar 

  28. 28.

    Z. Hajnal, J. Miro, G. Kiss et al., J. Appl. Phys. 86, 3792 (1999). https://doi.org/10.1063/1.371289

    CAS  Article  Google Scholar 

  29. 29.

    X.J. Du, Z. Li, C.N. Luan et al., J. Mater. Sci. 50, 3252 (2015). https://doi.org/10.1007/s10853-015-8893-4

    CAS  Article  Google Scholar 

  30. 30.

    M. Saleh, J.B. Varley, J. Jesenovec et al., Semicond. Sci. Technol. 35, 6 (2020). https://doi.org/10.1088/1361-6641/ab75a6

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Key Technology Research and Development Program of Shandong [Grant Number 2018GGX102024]; the National Natural Science Foundation of China [Grant Number 61874067]; and the Natural Science Foundation of Shandong Province [Grant Number ZR2019MF042].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hongdi Xiao or Jin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xiao, H., Le, Y. et al. Effect of Ta doping on the properties of β-Ga2O3 heteroepitaxial films prepared on KTaO3(100) substrates. J Mater Sci: Mater Electron 32, 2757–2764 (2021). https://doi.org/10.1007/s10854-020-05015-w

Download citation