Temperature-tuned bandgap characteristics of Bi12TiO20 sillenite single crystals

Abstract

Bi12MO20 (M: Si, Ge, Ti, etc.) compounds are known as sillenites having fascinating photorefractive characteristics. The present paper reports the structural and optical characteristics of one of the members of this family, Bi12TiO20 single crystals, grown by Czochralski method. X-ray diffraction pattern of the crystal presented sharp and intensive peaks associated with planes of cubic crystalline structure with lattice constant of a = 1.0142 nm. The optical properties were studied by means of room temperature Raman and temperature-dependent transmission experiments at various temperatures between 10 and 300 K. Raman spectrum indicated peaks around 127, 162, 191, 219, 261, 289, 321, 497 and 537 cm−1. The analyses of transmittance spectra indicated the increase of direct bandgap energy from 2.30 to 2.56 eV as temperature was decreased from room temperature to 10 K. The temperature-dependent bandgap characteristics of Bi12TiO20 were analyzed by means of Varshni and O’Donnell-Chen models. The analyses under the light of these models resulted in absolute zero bandgap energy of Eg(0) = 2.56(4) eV, rate of change of bandgap energy of γ = – 1.11 × 10−3 eV/K and average phonon energy of 〈Eph〉 = 8.6 meV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    D. Hou, X. Hu, Y. Wen, B. Shan, P. Hu, X. Xiong, Y. Qiao, Y. Huang, Phys. Chem. Chem. Phys. 15, 20698 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    T.M. Oliveira, C. Santos, A.F. Lima, M.V. Lalic, J. Alloy. Compd. 720, 187 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Belik, T. Kharlamova, A. Vodyankin, V. Svetlichnyi, O. Vodyankina, Ceram. Int. 46, 10797 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Hu, C.D. Sinclair, Chem. Mater. 25, 48 (2013)

    CAS  Article  Google Scholar 

  5. 5.

    T. Liu, W.J. Kong, Y.Y. Ren, Y. Cheng, Chinese Phys. B 26, 076105 (2017)

    Article  Google Scholar 

  6. 6.

    V.I. Anisimkin, E. Verona, A.S. Kuznetsova, Ultrasonics 94, 314 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    O. Pena-Rodriguez, J. Olivares, I. Banyasz, Opt. Mater. 47, 328 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    V. Marinova, S.H. Lin, S. Petrov, M.S. Chen, Y.H. Lin, K.Y. Hsu, Appl. Surf. Sci. 472, 2 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    S. Lanfredi, J.F. Carvalho, A.C. Hernandes, J. Appl. Phys. 88, 283 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    A.F. Lima, M.V. Lalic, Comp. Mater. Sci. 49, 321 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    S. Lardhi, D. Noureldine, M. Harb, A. Ziani, L. Cavallo, K. Takanabe, J. Chem. Phys. 144, 134702 (2016)

    Article  Google Scholar 

  12. 12.

    W. Wei, Y. Dai, B. Huang, J. Phys. Chem. 113, 5658 (2009)

    CAS  Google Scholar 

  13. 13.

    A.V. Makarevich, V.V. Shepelevich, V.N. Navnyko, M.A. Amanova, S.M. Shandarov, Crystallogr. Rep. 64, 780 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    J.H. Zhao, X.L. Wang, G. Fu, X.H. Liu, Q. Huang, P. Liu, Nucl. Instrum. Meth. B 268, 3434 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    A.V. Khomenko, A. García-Weidner, A.A. Kamshilin, Opt. Lett. 21, 1014 (1996)

    CAS  Article  Google Scholar 

  16. 16.

    W. Yao, H. Wang, X. Xu, X. Cheng, J. Huang, S. Shang, X. Yang, M. Wang, Appl. Catal. A 243, 185 (2003)

    CAS  Article  Google Scholar 

  17. 17.

    C.Y. Hui, Y.P. Pu, J. Wan, Y.S. Guo, C.W. Cui, J. Mater. Sci.: Mater. Electron. 29, 4668 (2018)

    CAS  Google Scholar 

  18. 18.

    J. Zhou, Z. Zou, A.K. Ray, X.S. Zhao, Ind. Eng. Chem. Res. 46, 745 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    H. Koc, S. Palaz, S. Simsek, A.M. Mamedov, E. Ozbay, Ferroelectrics 557, 98 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Zhang, Y.C. Zhang, B.J. Fu, M. Hong, M.Q. Xiang, Z. Liu, H. Liu, S.Y. Liu, J. Mater. Sci.: Mater. Electron. 26, 3179 (2015)

    CAS  Google Scholar 

  21. 21.

    L.F. Gorup, V. Bouquet, S. Deputier, V. Dorcet, M. Guilloux-Viry, I.M.G. Santos, A.A. Silva, A.E. Nogueira, A.M. Kubo, E. Longo, E.R. Camargo, Ceram. Int. 45, 3510 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    R.A. Jackson, J.A. Dawson, M.E.G. Valerio, Z.S. Macedo, Opt. Mater. 32, 1375 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    M. Isik, H.H. Gullu, M. Parlak, N.M. Gasanly, Physica B 582, 411968 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    L.H. Wang, M.L. Zhao, C.L. Wang, W.J. Kuai, X.T. Tao, Appl. Phys. Lett. 101, 062903 (2012)

    Article  Google Scholar 

  25. 25.

    R. Rao, N.P. Salke, A.B. Garg, Mater. Chem. Phys. 139, 640 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  27. 27.

    Y. Caglar, M. Caglar, S. Ilican, A. Ates, J. Phys. D 42, 065421 (2009)

    Article  Google Scholar 

  28. 28.

    S. Xu, W. Shangguan, J. Yuan, J. Shi, M. Chen, Mater. Sci. Eng. B 137, 108 (2007)

    CAS  Article  Google Scholar 

  29. 29.

    V.M. Skorikov, I.S. Zakharov, V.V. Volkov, E.A. Spirin, V.V. Umrikhin, Inorg. Mater. 37, 1149 (2001)

    CAS  Article  Google Scholar 

  30. 30.

    W. Guo, Y. Yang, Y. Guo, Y. Jia, H. Liu, Y. Guo, Phys. Chem. Chem. Phys. 16, 2705 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, B. Sahoo, Carbon 153, 545 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, B. Sahoo, Opt. Mater. 108, 110163 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, B. Sahoo, Ceram. Int. 45, 24625 (2019)

    CAS  Article  Google Scholar 

  34. 34.

    R. Kumar, A. Kumar, N. Verma, R. Philip, B. Sahoo, J. Alloy Compnd. 849, 156665 (2020)

    CAS  Article  Google Scholar 

  35. 35.

    R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, B. Sahoo, A.C.S. Appl, Nano Mater. 3, 8604 (2020)

    Google Scholar 

  36. 36.

    T.I. Mel’nikova, G.M. Kuz’micheva, N.B. Bolotina, V.B. Rybakov, Ya.V. Zubavichus, N.V. Sadovskaya, E.A. Mar’ina, Crystallogr. Rep. 59, 396 (2014).

  37. 37.

    M. Isik, N. Sarigul, N.M. Gasanly, J. Lumin. 224, 117280 (2020)

    CAS  Article  Google Scholar 

  38. 38.

    Y.P. Varshni, Physica 34, 149 (1964)

    Article  Google Scholar 

  39. 39.

    K.P. O’Donnell, X. Chen, Appl. Phys. Lett. 58, 2924 (1991)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Isik.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Delice, S., Gasanly, N.M. et al. Temperature-tuned bandgap characteristics of Bi12TiO20 sillenite single crystals. J Mater Sci: Mater Electron 32, 1316–1322 (2021). https://doi.org/10.1007/s10854-020-04904-4

Download citation