A waste corn cob core-derived SiO2 @ graphene-like carbon nanocomposite and its application in lithium-ion battery

Abstract

A waste corn cob core-derived SiO2 @ graphene-like carbon nanocomposite (CCC) has been synthesized by a hydro-thermal and high-temperature carbonization process. The CCC material is carbonized at 900 °C (CCC-900). The SiO2 nanoparticle with a granule size of 100–200 nm could be grown on the graphene-like carbon nanosheets. The BET-specific surface area can be calculated to be 481.81 m2 g−1. When it is used as an anode material for lithium-ion battery, the CCC composite can display the foremost discharge capacity of 2051.5 mAh g−1 at 200 mA g−1 and the maintain capacity of 125 mAh g−1 after 200 cycles. The high foremost discharge capacity could be attributed to the synergistic effect of SiO2 nanoparticles and graphene-like sheets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    P. Roy, S.K. Srivastava, J. Mater. Chem. A. 3, 2454 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    V. Soundharrajan, B. Sambandam, J.J. Song et al., Ceram. Int. 43, 13224 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    Q.S. Liao, H.Y. Hou, J.X. Duan et al., J. Appl. Polym. Sci. 134, 1 (2017)

    Google Scholar 

  4. 4.

    S. Goriparti, E. Miele, F.D. Angelis et al., J. Power. Sources. 257, 421 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    Z.B. Yang, J. Ren, Z.T. Zhang et al., Chem. Rev. 115, 5159 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    D.L. Jones, J.G. Edwards, D.V. Murphy et al., Soil Biol. Biochem. 43, 804 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    L. Beesley, E. Moreno-Jimenez, J.L. Gomez-Eyles et al., Environ. Pollut. 158, 2282 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    L.V. Zwieten, S. Kimber, S. Morris, Plant Soil 327, 235 (2010)

    Article  CAS  Google Scholar 

  9. 9.

    F. Adani, R. Confalonieri, F. Tambone et al., J. Environ. Qual. 33, 1866 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    X.F. Tan, Y.G. Liu, G.M. Zeng et al., Chemoorb. 125, 70 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    S.H. Ho, Y.D. Chen, Z.K. Yang et al., Bioresour. Technol. 246, 142 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Y.C. Li, J. Liu, Q.H. Yuan et al., RSC Adv. 6, 45041 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    L. Qie, W.M. Chen, Z.H. Wang et al., Adv. Mater. 24, 2047 (2012)

    Article  CAS  Google Scholar 

  14. 14.

    A. Jain, R. Balasubramanian, M.P. Srinivasan, Chem. Eng. J. 283, 789 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    H.Y. Hou, C.Y. Yu, X.X. Liu et al., Surf. Innov. 6, 159 (2018)

    Article  Google Scholar 

  16. 16.

    Y.J. Hwang, S.K. Jeong, K.S. Nahm et al., J. Phys. Chem. Solids. 68, 182 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    F. Chen, J. Yang, T. Bai et al., Electrochim. Acta. 192, 99 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    P. Liu, Y.M. Li, Y.S. Hu et al., J. Mater. Chem. A 4, 13046 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    X. Chen, X. Wang, Y. Xue et al., Appl. Biochem. Biotechnol. 186, 507 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    C. Falco, N. Baccile, M.M. Titirici et al., Green Chem. 13, 3273 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    Y.N. Gong, D.L. Li, C.Z. Luo et al., Green Chem. 19, 4132 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    D. Dastan, Appl. Phys. A. 123, 699 (2017)

    Article  CAS  Google Scholar 

  23. 23.

    V. Etacheri, G. Michlits, M.K. Seery et al., ACS Appl. Mater. Interfaces. 5, 1663 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    C.H. Ding, Y.J. Zhao, D. Yan et al., Electrochim. Acta. 221, 124 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    V. Selvamani, R. Ravikumar, V. Suryanarayanan et al., Electrochim. Acta. 190, 337 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    H. C. Tao, L.Y. Xiong, S. C. Zhu, X. et al, Int. J. Hydrogen Energy. 41, 21268 (2016)

  27. 27.

    N. Mohri, B. Oschmann, N. Laszczynski et al., J. Mater. Chem. A. 4, 612 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    W.B. Li, J.F. Huang, L.L. Feng et al., J. Alloys Compd. 716, 210 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    S. Yang, Q.F. Wang, J. Miao et al., Appl. Surf. Sci. 444, 522 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    R. Chen, L. Li, Z. Liu et al., J. Air Waste Manag. Assoc. 67, 713 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    P.W. Xiao, Q.H. Meng, L. Zhao et al., Mater. Des. 129, 164 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    R.F. Nie, M. Miao, W.C. Du et al., Appl. Catal. B 180, 607 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    X.F. Liu, D. Wang, B.S. Zhang et al., Electrochim. Acta 268, 234 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    D. Bhattacharjya, H.Y. Park, M.S. Kim et al., Langmuir 30, 318 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    S.X. Yang, W.P. Zhu, Z.P. Jiang et al., Appl. Surf. Sci. 252, 8499 (2006)

    CAS  Article  Google Scholar 

  36. 36.

    Q.F. Wang, M.L. Wang, J. Miao et al., J. Mater. Sci.: Mater. Electron. 30, 14834 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    S.J. Kim, M.C. Kim, S.B. Han et al., J. Ind. Eng. Chem. 49, 105 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Guo, Y.G. Zhang, Y.G. Wang et al., Electrochim. Acta. 296, 989 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    W.Q. Lv, X.Y. Shi, H.C. Huang et al., Mater. Today Energy. 3, 40 (2017)

    Article  Google Scholar 

  40. 40.

    D.P. Dutta, S. Nath, J. Molecular Liquids. 269, 140 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    I. Cameán, P. Lavela, J.L. Tirado et al., Fuel 89, 986 (2010)

    Article  CAS  Google Scholar 

  42. 42.

    Y. Zhou, H.J. Guo, Y. Yong et al., Mater. Lett. 195, 164 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    G. B. Xu, L.W. Yang, X. L.Wei, et al, J. Power. Sources. 295, 305 (2015)

  44. 44.

    X.Y. Wang, H. Hao, J.L. Liu et al., Electrochim. Acta 56, 4065 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Universities of Henan Province (NSFRF200402) and the Research Fund for the Doctoral Program of Henan Polytechnic University (No. 760407/018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiufen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 2536 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tian, H., Miao, J. et al. A waste corn cob core-derived SiO2 @ graphene-like carbon nanocomposite and its application in lithium-ion battery. J Mater Sci: Mater Electron 32, 1278–1288 (2021). https://doi.org/10.1007/s10854-020-04901-7

Download citation