Mechanism for enhanced ferroelectricity in multi-doped BiFeO3 thin films

Abstract

The thin films of BFO, binary-doped Bi0.96Sr0.04Fe0.98Co0.02O3, and multi-doped Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3 are fabricated using the sol–gel method. To study the mechanism for the enhanced intrinsic ferroelectricity in multi-doped BFO, this work uses related aspects including the electrostatic potential energy, the Fermi level, and the Schottky interface barrier. Using multi-doped BFO can reduce the height of the electrostatic barrier and change the Fermi level so that the Schottky barrier height is increased to reduce the leakage current, thereby improving the intrinsic ferroelectricity. Also, using multivalent Mn with a double-exchange effect improves the ferromagnetism. These improved intrinsic ferroelectric and ferromagnetic properties make BFO applicable in various practical devices and fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  2. 2.

    J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256 (2007)

    CAS  Article  Google Scholar 

  3. 3.

    A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H. Bin Lu, G.Z. Yang, A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23, 1277–1281 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18, 1445–1448 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    V.A. Khomchenko, D.A. Kiselev, M. Kopcewicz, M. Maglione, V.V. Shvartsman, P. Borisov, W. Kleemann, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, Doping strategies for increased performance in BiFeO3. J. Magn. Magn. Mater. 321, 1692–1698 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    G. Tan, Z. Chai, Y. Zheng, Z. Yue, H. Ren, A. Xia, W. Yang, L. Lv, M. Xue, Y. Liu, Resistive switching behavior and improved multiferroic properties of Bi0.9Er0.1Fe0.98Co0.02O3/Co1-xMnxFe2O4 bilayered thin films. Ceram. Int. 44, 12600–12609 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    D. Yi, P. Yu, Y. Chen, H. Lee, Q. He, Y. Chu, R. Ramesh, Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0.3MnO3 heterostructure through the interface engineering. Adv. Mater. 31, 1806335 (2019)

    Article  CAS  Google Scholar 

  9. 9.

    R. Gupta, S. Chaudhary, R.K. Kotnala, Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces. 7, 8472–8479 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    Y.-H. Lee, J.-M. Wu, C.-H. Lai, Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 42903 (2006)

    Article  CAS  Google Scholar 

  11. 11.

    Y. Zheng, G. Tan, H. Ren, A. Xia, A kind of Bi1−xErxFeO3 films with potential excellent multiferroic performances. J. Mater. Sci. 52, 4903–4909 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    H. Xian, Y. Du, J. Zhang, X. Chen, Structural, magnetic and optical properties of BiFe1−xNbxO3. Chinese J. Chem. Phys. 29, 578–584 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Zheng, G. Tan, A. Xia, H. Ren, Structure and multiferroic properties of multi-doped Bi1-xErxFe0.96Mn0.02Co0.02O thin films. J. Alloys Compd. 684, 438–444 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    J. Xu, G. Ye, M. Zeng, Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3. J. Alloys Compd. 587, 308–312 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    S. Madolappa, S. Kundu, R. Bhimireddi, K.B.R. Varma, Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol–gel route. Mater. Res. Express. 3, 65009 (2016)

    Article  CAS  Google Scholar 

  16. 16.

    X. Yan, G. Tan, W. Liu, H. Ren, A. Xia, Structural, electric and magnetic properties of Dy and Mn co-doped BiFeO3 thin films. Ceram. Int. 41, 3202–3207 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Gu, J. Zhao, W. Zhang, S. Liu, S. Ge, W. Chen, Y. Zhang, Improved ferromagnetism and ferroelectricity of La and Co co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 42, 8863–8868 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    A.K. Sinha, B. Bhushan, Jagannath, R.K. Sharma, S. Sen, B.P. Mandal, S.S. Meena, P. Bhatt, C.L. Prajapat, A. Priyam, S.K. Mishra, S.C. Gadkari, Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol–gel route. Results Phys. 13, 102299 (2019)

  19. 19.

    L. Wang, S. Yang, F. Zhang, S. Fan, Perfection of leakage and ferroelectric properties of Ni-doped BiFeO3 thin films. Micro. Nano. Lett. 13, 502–505 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    H. Xian, L. Tang, Z. Mao, J. Zhang, X. Chen, Bounded magnetic polarons induced enhanced magnetism in Ca-doped BiFeO3. Solid State Commun. 287, 54–58 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    L. Zhang, H. Ke, H. Zhang, F. Li, J. Zhao, H. Luo, L. Cao, G. Zeng, X. Li, W. Wang, Effects of morphotropic phase boundary on the electric behavior of Er/Ti co-doped BiFeO3 ceramics. Scr. Mater. 158, 71–76 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    J. Rout, R.N.P. Choudhary, Structural transformation and multiferroic properties of Ba–Mn co-doped BiFeO3. Phys. Lett. A. 380, 288–292 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    M. Yadav, A. Agarwal, S. Sanghi, M. Tuteja, T. Bhasin, J. Singh, Effect of Nd and Ti doping on crystal structure refinement, optical, dielectric and magnetic properties of Bi0.90Nd0.10FeO3multiferroic. Mater. Res. Express. 6, 106107 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    M. Xue, G. Tan, A. Xia, Z. Chai, L. Lv, H. Ren, X. Ren, J. Li, Multi-doped bismuth ferrite thin films with enhanced multiferroic properties. Ceram. Int. 45, 12806–12813 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    H. Wang, D. Han, J. Xu, L. Yang, Influence of Ni doping on the structural, ferroelectric, magnetic and optical properties of Bi0.85Nd0.15Fe1−xNixO3 thin films. Bull. Mater. Sci. 42, 163 (2019)

    Article  CAS  Google Scholar 

  26. 26.

    Y. Liu, G. Tan, M. Guo, Z. Chai, L. Lv, M. Xue, X. Ren, J. Li, H. Ren, A. Xia, Multiferroic properties of La/Er/Mn/Co multi-doped BiFeO3 thin films. Ceram. Int. 45, 11765–11775 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    Z. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. Yu, X. Zhao, Structural transition and multiferroic properties of Eu-doped BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2743–2747 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    Q. Yun, W. Xing, J. Chen, W. Gao, Y. Bai, S. Zhao, Effect of Ho and Mn co-doping on structural, ferroelectric and ferromagnetic properties of BiFeO3 thin films. Thin Solid Films 584, 103–107 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, Structural, electrical, and magnetic properties of multiferroic Bi1−xLaxFe1−yCoyO3 thin films. J. Appl. Phys. 107, 124109 (2010)

    Article  CAS  Google Scholar 

  30. 30.

    D. Kothari, V.R. Reddy, V.G. Sathe et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320, 548–552 (2008)

    CAS  Article  Google Scholar 

  31. 31.

    Z. Chai, G. Tan, Z. Yue, M. Xue, Y. Liu, L. Lv, H. Ren, A. Xia, Structural transition, defect complexes and improved ferroelectric behaviors of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3/Co1-xMnxFe2O4 bilayer thin films. Ceram. Int. 44, 15770–15777 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    M. Guo, G. Tan, W. Yang, Y. Liu, H. Ren, A. Xia, L. Lv, M. Xue, Multiferroic properties of Bi0.89Ho0.08Sr0.03Fe0.97−xMn0.03NixO3 thin films modulated by F-N tunneling effects. Ceram. Int. 44, 12282–12291 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 62903 (2005)

    Article  CAS  Google Scholar 

  34. 34.

    Z. Chai, G. Tan, Z. Yue, W. Yang, M. Guo, H. Ren, A. Xia, M. Xue, Y. Liu, L. Lv, Y. Liu, Ferroelectric properties of BiFeO3 thin films by Sr/Gd/Mn/Co multi-doping. J. Alloys Compd. 746, 677–687 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    D. Li, W. Zheng, D. Zheng, J. Gong, L. Wang, C. Jin, P. Li, H. Bai, Magnetization and resistance switchings induced by electric field in epitaxial Mn: ZnO/BiFeO3 multiferroic heterostructures at room temperature. ACS Appl. Mater. Interfaces 8, 3977–3984 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    C.-T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in pn junctions and pn junction characteristics. Proc. IRE. 45, 1228–1243 (1957)

    Article  Google Scholar 

  37. 37.

    R. Latter, Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Phys. Rev. 99, 510 (1955)

    CAS  Article  Google Scholar 

  38. 38.

    P.K. Chakraborty, S.K. Biswas, K.P. Ghatak, On the modification of the Fermi-Dirac distribution function in degenerate semiconductors. Phys. B Condens. Matter. 352, 111–117 (2004)

    CAS  Article  Google Scholar 

  39. 39.

    J. Tersoff, Schottky barriers and semiconductor band structures. Phys. Rev. B. 32, 6968 (1985)

    CAS  Article  Google Scholar 

  40. 40.

    B.D. Coleman, M.L. Hodgdon, A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials. Int. J. Engng. Sci. 24, 897–919 (1986)

    Article  Google Scholar 

  41. 41.

    J. Wang, J.B. Neaton, H. Zheng et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    CAS  Article  Google Scholar 

  42. 42.

    L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008)

    Article  CAS  Google Scholar 

  43. 43.

    S.S. Rao, J.T. Prater, F. Wu, C.T. Shelton, J.-P. Maria, J. Narayan, Interface magnetism in epitaxial BiFeO3-La0.7Sr0.3MnO3 heterostructures integrated on Si (100). Nano Lett. 13, 5814–5821 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shaanxi Province Key Research and Development Plan (2018GY107); the Project of the National Natural Science Foundation of China (51372145); the Graduate Innovation Fund of Shaanxi University of Science and Technology (SUST-A04); the Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-730).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Tan, G., Li, J. et al. Mechanism for enhanced ferroelectricity in multi-doped BiFeO3 thin films. J Mater Sci: Mater Electron 32, 1265–1277 (2021). https://doi.org/10.1007/s10854-020-04900-8

Download citation