Enhanced photocatalytic activity on Vanadium-doped NiO nanostructures in natural sunlight

Abstract

The contamination of water from industrial pollutants is the most significant concern for environment. Semiconductors have been at forefront of effective elimination of pollutants from waste water, with the tuning of bandgap and improving the photocatalytic activity. This work elaborates the hydrothermal synthesize of highly stable Nickel Oxide (NiO) and Vanadium-doped Nickel Oxide (V-NiO) nanoparticles. The undoped and doped Nickel Oxide nanoparticles were characterized for structural, morphological, thermal and optical properties. X-ray diffraction pattern reveals the V-NiO stabilized in cubic structure. Morphological analysis demonstrates that upon Vanadium doping NiO particles transform from network like structure to spherical nanoparticles. NiO and V-NiO nanoparticles have an average crystallite size of 42 nm and 26 nm which are well matched with particle size calculated from transmission electron micrographs. The photoluminescence study reveals that the Vanadium substitution specifically reduces the rate of recombination in NiO. The V-NiO catalysts exhibited noticeable red shift of absorption spectrum to the visible region in comparison with pure NiO. The functional groups were studied using Fourier Transform Infrared Spectroscopy (FTIR). The photocatalytic study by degradation of Xylenol Orange (XyO) under sunlight irradiation unveils that photocatalytic activity of NiO is enhanced on vanadium doping. Reaction kinetics investigation of XyO degradation revealed that the reaction obeys the pseudo-zero-order model with improved rate constant of 0.115 mol L−1S−1 and 0.225 mol L−1S−1 for NiO and V-NiO, respectively. The retention of high performance and structural stability of photocatalysts after four consecutive degradation cycles implies the reusability of the catalyst. Consequently, the V-NiO with high photocatalytic activity with improved cyclic stability is able to provide as a promising material in the field of environmental remediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Y. Li, F. Chen, R. He, Y. Wang, N. Tang, Semiconductor photocatalysis for water purification, in Chapter 24, nanoscale materials in water purification. (Springer, Berlin, 2019), pp. 689–706

    Google Scholar 

  2. 2.

    A. Kumar, G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 3, 106–114 (2017)

    Google Scholar 

  3. 3.

    F. Opoku, K.K. Govender, C.G.C.E. Van Sittert, P.P. Govender, Recent progress in the development of Semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustain Syst. 1, 1–24 (2017)

    Article  CAS  Google Scholar 

  4. 4.

    M. Pawar, S. Topcu Sendogdular, P. Gouma, A brief overview of TiO2 photocatalysts for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system. J. Nanometer. (2018). https://doi.org/10.1155/2018/5953609

    Article  Google Scholar 

  5. 5.

    B. Viswanathan, Photocatalytic degradation of dyes: an overview. Curr. Catal. 7, 1–25 (2018)

    Article  CAS  Google Scholar 

  6. 6.

    S.M. Saleh, Metal oxide nanomaterials as photo-catalyst for dye degradation. Res. Dev. Mater. Sci. 9(2), 1–8 (2019)

    Google Scholar 

  7. 7.

    R. Nallendran, G. Selvan, A.R. Balu, Photoconductive and photocatalytic properties of CdO-NiO nanocomposite synthesized by a cost-effective chemical method. J. Mater. Sci. Mater. 29, 11384–11393 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    F. Torki, H. Faghihian, Photocatalytic activity of NiS, NiO and coupled NiS-NiO for degradation of pharmaceutical pollutant cephalexin under visible light. RSC Adv. 7, 54651–54661 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation—a review. J. Environ. Manag. 198, 78–94 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    J.M. Goncalves, M.I. da Silva, L. Angnes, K. Araki, Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. J. Mater. Chem. A 8, 2171–2206 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    M.O. Guerrero-Perez, V-containing mixed oxide catalysts for reduction-oxidation based reactions with environmental applications: a short review. Catalysts 8, 1–14 (2018)

    Article  CAS  Google Scholar 

  12. 12.

    G. Nabi, S. Rehman, M.B. Tahir, N. Malik, R. Yousaf, M. Maraj, M. Rizwan, M. Tanveer, Structural, optical and magnetic properties of pure and Vanadium doped NiO microstructures for spintronics applications. J. Supercond. Nov. Magn. 13, 1–6 (2020)

    Google Scholar 

  13. 13.

    V. Panneerselvam, K.K. Chinnakutti, S.T. Salammal, A.K. Soman, K. Parasuraman, V. Vishwakarma, V. Kanagasabai, Role of Copper/Vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films. Appl. Nanosci. 6, 1299–1312 (2018)

    Article  CAS  Google Scholar 

  14. 14.

    S.A. Mohammed, L.A. Amouri, E. Yousif, A.A. Ali, F. Mabood, H.F. Abbas, S. Alyaqoobi, Synthesis of NiO:V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation. Heliyon 4, 1–12 (2018)

    Article  Google Scholar 

  15. 15.

    H.H. Lim, B.A. Horri, B. Salamatinia, Synthesis and characterizations of Nickel (II) Oxide sub-micro rods via co-precipitation methods. IOP Conf. Ser. Mater. Sci. Eng. 398, 1–9 (2018)

    Article  Google Scholar 

  16. 16.

    A.J. Haider, R. Al-Anbari, H.M. Sami, M.J. Haider, Photocatalytic activity of Nickel oxide. J Mater Res Technol. 3, 2802–2808 (2019)

    Article  CAS  Google Scholar 

  17. 17.

    A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Structural, optical and photocatalytic applications of biosynthesized NiO photocatalysts. Green Chem Lett Rev. 11, 166–175 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    R.A. Raj, M.S. Alsalhi, S. Devanesan, Microwave assisted synthesis of Nickel oxide nanoparticles using coriandrum sativum leaf extract and their structural-magnetic catalytic properties. Materials 10, 1–12 (2017)

    Google Scholar 

  19. 19.

    D.A. Brewster, Y. Bian, K.E. Knowles, Direct solvothermal synthesis of phase pure colloidal NiO nanocrystals. Chem. Mater. 5, 2004–2013 (2020)

    Article  CAS  Google Scholar 

  20. 20.

    Q. Zhou, Z. Lu, Z. Wei, L. Xu, Y. Gui, W. Chen, Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high performance CH4 sensing. Front. Chem 6, 1–4 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanometer. (2020). https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  22. 22.

    N. Duraisamy, K. Kadiah, R. Rajendran, S. Prabhu, R. Ramesh, G. Dhanaraj, Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Res. Chem. Intermed. 3, 1–15 (2018)

    Google Scholar 

  23. 23.

    K. Yogesh Kumar, S. Archana, T.N. Vinuth Raj, B.P. Prasana, M.S. Raghu, H.B. Muralidhara, Superb adsorption capacity of hydrothermally synthesized copper oxide and nickel oxide nanoflakes towards anionic and cationic dyes. J. Sci. Adv. Mater. Devices 2, 183–191 (2017)

    Article  Google Scholar 

  24. 24.

    R. Wang, L. Wu, B. Chica, L. Gu, G. Xu, Y. Yuan, Ni(dmgH)2 complex coupled with metal-organic frameworks MIL-101(Cr) for photocatalytic H2 evolution under visible light irradiation. J. Materiomics 3, 58–62 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    F. Pellegrino, L. Pellutie, F. Sordello, C. Minero, E. Ortel, V.-D. Hodoroaba, V. Maurino, Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B. 216, 80–87 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    T. Adinaveen, T. Karnan, S.A.S. Selvakumar, Photo catalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: an attempt to convert waste to a valuable product. Heliyon 5, 1–7 (2019)

    Article  Google Scholar 

  27. 27.

    P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveiraa, A. Machulek Jr., Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag- Doped TiO2. J. Braz. Chem. Soc. 9, 1788–1802 (2017)

    Google Scholar 

  28. 28.

    P.A. Sheena, K.P. Priyanka, A. Sridevi, T. Varghese, Characterization of NiO/CoPc nanocomposite material synthesized by solvent evaporation route. J. Nanostruct. Chem. 8, 207–215 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci. Rep 7, 1–12 (2017)

    Article  CAS  Google Scholar 

  30. 30.

    A.C. Gandhi, S.Y. Wu, Strong deep level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7, 1–12 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    S. Johnson Jeyakumar, R. Sathish Kumara, M. Jothibas, I. Kartharinal Punithavathy, J. Prince Richard, Temperature effects on the magnetic properties of NiO nanoparticles. Int. J. Adv. Sci. Technol. Eng. Manag. Sci. 9, 8–12 (2017)

    Google Scholar 

  32. 32.

    R. Manigandan, T. Dhanasekaran, A. Padmanaban, K. Giribabu, R. Suresh, V. Narayanan, Bifunctional hexagonal Ni/NiO nanostructures: influence of the core-shell phase on magnetism, electrochemical sensing of serotonin and catalytic reduction of 4-nitrophenol. Nanoscale Adv. 1, 1531–1540 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Efffect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149–156 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    M. Ramesh, M.P. Chander Rao, S. Anandan, H. Nagaraja, Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 5, 601–610 (2018)

    Article  CAS  Google Scholar 

  35. 35.

    F.J. Twagirayezu, Density functional theory study of the effect of Vanadium doping on electronic and optical properties of NiO. Int J Comput Mater. 8, 1–13 (2019)

    Google Scholar 

  36. 36.

    S. Agrawal, A. Parveen, A. Azam, Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J. Lumin. 184, 250–255 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    O. Sacco, D. Sannino, M. Matarangolo, V. Vaiano, Room temperature synthesis of V-doped TiO2 and its photocatalytic activity in the removal of caffeine under uv irradiation. Materials 911, 1–10 (2019)

    Google Scholar 

  38. 38.

    H.S. Ali, A.S. Alghamdi, G. Murtaza, H.S. Arif, W. Naeem, G. Farid, S. Sharif, M.G.B. Asiq, S.A. Shabbir, Facile microemulsion synthesis of ‘V’ doped ZnO nanoparticles to analyze the compositional, optical and electronic properties. Materials 821, 1–14 (2019)

    Google Scholar 

  39. 39.

    W.B. Sultan, M.S. Lassoued, S. Ammar, Thierry Toupance, Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci. Mater. Electron. 21, 15826–15834 (2017)

    Article  CAS  Google Scholar 

  40. 40.

    A. Khatri, P.S. Rana, Visible light photocatalysis of methylene blue using cobalt substituted cubic NiO nanoparticles. Bull. Mater. Sci. 141, 1–11 (2019)

    Google Scholar 

  41. 41.

    H. Abbas, K. Nadeem, A. Hassan, S. Rahman, H. Krenn, Enhanced photocatalytic activity of ferromagnetic Fe-doped NiO nanoparticles. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.163637

    Article  Google Scholar 

  42. 42.

    Amita, Deepak, Arun, P.S. Rana, Synthesis, characterization and sunlight catalytic performance of Cu doped NiO nanoparticles. AIP Conf. Proc. 2093(0200035), 1–4 (2019)

    Google Scholar 

  43. 43.

    B. Sarwan, B. Pare, A.D. Acharya, Synthesis of Mn/NiO and Mn/BiOCl nanoparticles for degradation of Nile Blue dye contaminated water under visible light illumination. Particul. Sci. Technol 38, 659–666 (2019)

    Article  CAS  Google Scholar 

  44. 44.

    R.R. Muthuchudarkodi, T.M. MerlinSathyaSuganthi (2017) Green synthesis, Characterizations and photocatalytic applications of cerium doped nickel oxide nanoparticles assisted Byalternantherasessilis. Int. J. Latest Trends Eng. Technol. 164–168

  45. 45.

    K.R. Basavalingaiah, Udayabhanu, S. Harishkumar, G. Nagaraju, Chikkahanumantharayapa, NiO and Ag@NiO nanomaterials for enhanced photocatalytic and photoluminescence studies: green synthesis using Lycopodium Linn. AJEAT 2, 79–85 (2019)

    Google Scholar 

  46. 46.

    C.R. Rajith Kumar, Virupaxappa, S. Betageri, G. Nagaraju, G.H. Pujar, B.P. Suma, M.S. Latha, Photocatalytic, nitride sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J. Sci. Adv. Mater. Devices 5, 48–55 (2020)

    Article  Google Scholar 

  47. 47.

    H. Yu, H. Yin, L. Wang, J. Gong, Y. Zheng, Q. Nie, Enhanced degradation of rhodamine B, tetracycline and carbamazepine by construction of a solar driven indirect Z-scheme AgI/Ag/Bi2O2Co3 nano sheets photocatalyst. J. Mater. Sci. Mater. Electron. 30, 17227–17238 (2019)

    CAS  Article  Google Scholar 

  48. 48.

    E.M.M. Putri, M. Rachimoellah, C.S. Rahendaputri, Y. Adisti, Y. Zetra, Photocatalytic degradation of Malachite green using TiO2 and O2/UV. AIP Conf. Proc., 2049, 020092-1-020092-8 (2018)

  49. 49.

    B. Samai, S. Chall, S.S. Mati, S.C. Bhattacharya, Role of silver nanoclusters in the enhanced photocatalytic activity of cerium oxide nanoparticles. Eur. J. Inorg. Chem. 27, 3224–3231 (2018)

    Article  CAS  Google Scholar 

  50. 50.

    M.A.I. Molla, M. Furukawa, I. Tateishi, H. Katsumata, T. Suzuki, S. Kaneco, Photo catalytic decolorization of dye with self-dye-sensitization under fluorescent light irradiation. Chem. Eng. 8, 1–8 (2017)

    Google Scholar 

  51. 51.

    M. Shaban, M.R. Abukhadra, S.S. Ibrahim, M.G. Shahien, Photocatalytic degradation and Photo-Fenton oxidation of Congo-red dye pollutants in water using natural chromite response surface optimization. Appl. Water Sci. 7, 4743–4756 (2017)

    CAS  Article  Google Scholar 

  52. 52.

    L. Chen, S.-L. Hsieh, C.-H. Kuo, S. Hsieh, W.-H. Chen, C.-W. Chen, C.-D. Dong, Novel MoS2 quantum dots as a highly efficient visible-light driven photocatalyst in water remediation. RSC Adv. 10, 31794–31799 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The financial support from Anna University in the form of Anna Centenary Research Fellowship (ACRF) from the Center for Research, Anna University Chennai is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Arivuoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prabhavathy, S., Arivuoli, D. Enhanced photocatalytic activity on Vanadium-doped NiO nanostructures in natural sunlight. J Mater Sci: Mater Electron 32, 1105–1120 (2021). https://doi.org/10.1007/s10854-020-04885-4

Download citation