Skip to main content
Log in

Microstructure, magnetic, and dielectric properties of Co–Zr co-doped hexagonal barium ferrites based on the sintering temperature and doping concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, M-type hexagonal barium ferrites co-doped with Co and Zr atoms were prepared by a solid-phase method based on the sintering temperature and doping concentration. First, the influences of the sintering temperature on the crystal structure, microstructure, and magnetic properties of ferrites were studied. The crystallinity of the materials increases with the sintering temperature and obtaining high density and uniform grain size at 1300 °C, which promotes grain-boundary diffusion and suppresses grain-boundary migration. Second, the dependence of the crystal structure, microstructure, magnetic, and dielectric properties of Ba(CoxZrx)Fe12−2xO19 on the doping concentration (x = 0, 0.2, 0.4, 0.6) was investigated at sintering temperature of 1300 °C. The increase of the crystal parameter c with x value reveals that the ions of Co2+ and Zr4+ successfully replace the Fe3+ ions. Additionally, the co-doping ions of Co2+–Zr4+ promote the grain-boundary migration and result in some large size grain (> 20 mm) that appeared and increased with the doping concentration. The magnetic hysteresis loops reveal the saturation magnetization increases from 60.45 to 68.6 emu/g, and the coercivity decreases from 1800 to 190 Oe with the x increased to 0.6. The dielectric properties measurement displays the Co–Zr co-doping can improve the dielectric and reduce the dielectric loss. The highest value of the real part of permittivity (ε′) and the lowest value of the imaginary part of permittivity (ε″) can be obtained at a doping concentration of x = 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Pullar, Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  2. V.G. Harris, A.S. Sokolov, J. Super. Nov. Magn. 32, 97–108 (2019)

    Article  CAS  Google Scholar 

  3. V.G. Harris, IEEE Trans. Magn. 48(3), 1075–1104 (2012)

    Article  CAS  Google Scholar 

  4. V.G. Harris, A. Geiler, Y.J. Chen, S.D. Yoon, M.Z. Wu, A. Yang, Z.H. Chen, P. He, P.V. Parimi, J. Magn. Magn. Mater. 321(14), 2035–2047 (2009)

    Article  CAS  Google Scholar 

  5. V.G. Harris, Z.H. Chen, Y.J. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y.X. He, J. Appl. Phys. 99(8), 547–583 (2006)

    Google Scholar 

  6. H. Sözeri, A. Baykal, B. Ünal, Phys. Status Solidi A 209(10), 2002–2013 (2012)

    Article  Google Scholar 

  7. G.R. Amiri, M.H. Yousefi, M.R. Abolhassani, S. Manouchehri, M.H. Keshavarz, S. Fatahian, J. Magn. Magn. Mater. 323, 730–734 (2011)

    Article  CAS  Google Scholar 

  8. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  CAS  Google Scholar 

  9. M. Jazirehpour, M.H. Shams, O. Khani, J. Alloys. Compd. 545, 32–40 (2012)

    Article  CAS  Google Scholar 

  10. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  CAS  Google Scholar 

  11. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, J. Magn. Magn. Mater. 320, 2746–2751 (2008)

    Article  CAS  Google Scholar 

  12. M. Jean, V. Nachbaur, J. Bran, J. Le Breton, J. Alloy. Compd. 496, 306 (2010)

    Article  CAS  Google Scholar 

  13. T.G. Carreno, M.P. Morales, C. Serna, J. Mater. Lett. 43(3), 97–101 (2000)

    Article  Google Scholar 

  14. S. Chaudhury, S.K. Rakshit, S.C. Parida, Z. Singh, K.D. Singh Mudher, V. Venugopal, J. Alloy. Compd. 455, 25–30 (2008)

    Article  CAS  Google Scholar 

  15. V. Turchenko, A. Turkhanov, S. Trukhanov, I. Bobrikov, A.M. Balagurow, Eur. Phys. J. Plus. 131(4), 82 (2016)

    Article  Google Scholar 

  16. M. Awawdeh, I. Bsoul, S.H. Mahmood, J. Alloy. Compd. 585, 465–473 (2014)

    Article  CAS  Google Scholar 

  17. H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Ceram. Int. 40(6), 8645–8657 (2014)

    Article  Google Scholar 

  18. X. Tang, Y. Yang, K. Hu, J. Alloy. Compd. 477(1), 488–492 (2009)

    Article  CAS  Google Scholar 

  19. W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, Q.J. Zhang, J. Am. Ceram. Soc. 90(7), 2095–2103 (2007)

    Article  CAS  Google Scholar 

  20. D. Chen, Y. Liu, Y. Li, W. Zhong, H. Zhang, J. Magn. Magn. Mater. 323, 2837 (2011)

    Article  CAS  Google Scholar 

  21. V.V. Soman, V.M.D.K. NanotiKulkarni, Ceram. Int. 39, 5713–5723 (2013)

    Article  CAS  Google Scholar 

  22. J. Li, H.W. Zhang, V.G. Harris, Y.L. Liao, Y.L. Liu, J. Alloy. Compd. 649, 782–787 (2015)

    Article  CAS  Google Scholar 

  23. E.D. Solov’eva, E.V. Phshkova, A.E. Perekos, Inorg. Mater. 48, 1147–1152 (2012)

    Article  Google Scholar 

  24. S.F. Wang, C.F. Zhang, G.G. Sun, B. Chen, W. Liu, X. Xiang, H. Wang, L.M. Fang, Q. Tian, Q.P. Ding, X.T. Zu, J. Sol-Gel Sci. Technol. 73, 371–378 (2015)

    Article  CAS  Google Scholar 

  25. P. Kumar, A. Gaur, Ceram. Int. 43, 16403–16407 (2017)

    Article  CAS  Google Scholar 

  26. H. Su, X.L. Tang, Z.Y. Zhong, J. Shen, J. Appl. Phys. 109, 07A501 (2011)

    Article  Google Scholar 

  27. E.M. Zhou, H. Zheng, L. Zheng, P. Zheng, Z.H. Ying, X.J. Deng, Int. J. Appl. Ceram. Tec. 15, 1023–1029 (2018)

    Article  CAS  Google Scholar 

  28. H. Zheng, M.G. Han, Y.H. Wu, L. Zheng, W.J. Zhao, L.J. Deng, H.B. Qin, IEEE. Trans. Nanotechnol. 17, 56–60 (2016)

    Article  Google Scholar 

  29. L.H. Shao, S.Y. Shen, H. Zheng, P. Zheng, Q. Wu, L. Zheng, J. Electron. Mater. 47, 4085–4089 (2018)

    Article  CAS  Google Scholar 

  30. N. Yasmin, M. Mirza, M. Safda, J. Magn. Magn. Mater. 446, 276–281 (2018)

    Article  CAS  Google Scholar 

  31. T.B. Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, J. Alloys Compd. 671, 245–253 (2016)

    Article  Google Scholar 

  32. R. Bhosale, R. Barkule, D. Shengule, K. Jadhav, J. Mater. Sci. 24(8), 3101–3107 (2013)

    CAS  Google Scholar 

  33. J. Li, S. He, K.Z. Shi, Ceram. Int. 44, 6953–6958 (2018)

    Article  CAS  Google Scholar 

  34. R.K. Mudsainiyan, S.K. Chawla, S.S. Meena, J. Alloy. Compd. 615, 875–881 (2014)

    Article  CAS  Google Scholar 

  35. C.S. Dong, X. Wang, P.H. Zhou, T. Liu, J.L. Xie, L.J. Deng, J. Magn. Magn. Mater. 354, 340–344 (2014)

    Article  CAS  Google Scholar 

  36. C.Y. Liu, Y.J. Zhang, Y. Tang, Z.R. Wang, N. Ma, P.Y. Du, J. Mater. Chem. C. 5(14), 3461–3472 (2017)

    Article  CAS  Google Scholar 

  37. R.K. Mudsainiyan, S.K. Chawla, S.S. Meena, N. Sharma, R. Singh, A. Das, Cer. Int. 40, 16617–16626 (2014)

    Article  CAS  Google Scholar 

  38. A. Gruskova, J. Slama, A.G. Angeles, M. Soka, J. Elec. Eng. 63, 156 (2012)

    Google Scholar 

  39. Z.Ž Lazarević, Č Jovalekić, D.L. Sekulić, A. Milutinović, S. Baloš, M. Slankamenac, N.Ž Romčević, Mater. Res. Bull. 48, 4368–4378 (2013)

    Article  Google Scholar 

  40. K.W. Wagner, Archiv f. Elektrotechnik. 2, 371–387 (1914)

    Article  Google Scholar 

  41. H.C. Cao, H. Zheng, L.N. Fan, Z.F. Cheng, J.W. Zhou, Q. Wu, P. Zheng, L. Zheng, Y. Zhang, Int. J. Appl. Cream. Technol. 17, 812–821 (2020)

    Google Scholar 

  42. J.L. Jones, Mater. Sci. Eng. B. 167, 3–13 (2010)

    Article  Google Scholar 

  43. D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang, J.S. Lee, J.-G. Yoon, T.K. Song, T.W. Noh, Phys. Rev. Lett. 95, 237602 (2005)

    Article  CAS  Google Scholar 

  44. N. Singh, A. Agarwal, S. Sanghi, S. Khasa, J. Magn. Magn. Mater. 324, 2506–2511 (2010)

    Article  Google Scholar 

  45. S.S.N. Bharadwaj, J.R. Kim, H. Ogihar, L.E. Cross, S. Trolier-McKinstry, C.A. Randall, Phys. Rev. B. 83, 024106 (2011)

    Article  Google Scholar 

  46. A.K. Pradhan, P.R. Mandal, K. Bera, S. Saha, T.K. Nath, Phys. B 525, 1–6 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant Nos. 51702075, 51771176), National Key Research and Development Project (Grant No. 2019YFF0217205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fan, L., Cao, H. et al. Microstructure, magnetic, and dielectric properties of Co–Zr co-doped hexagonal barium ferrites based on the sintering temperature and doping concentration. J Mater Sci: Mater Electron 32, 2685–2695 (2021). https://doi.org/10.1007/s10854-020-04761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04761-1

Navigation