Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing


Sn is the main interconnect material for three-dimensional (3D) Packaging of chip stacking in electronic packaging. In this paper, the intermetallic compound (IMC) produced through an interfacial reaction between Sn-xCNTs (x = 0, 0.075 wt%) solder and a Cu substrate was evaluated at 130 °C, 150 °C, and 170 °C for 30, 50, 100 h and after multiple reflows (3, 6, 9). In Sn-0.075CNTs system, CNTs inhibited the growth of Cu6Sn5 and refine the microstructure of solder joint. The growth rate of IMC decreased after reflowing and aging for 100 h. Compared to pure Sn/Cu system, the thickness of Cu6Sn5 and Cu3Sn was the thinner when the CNTs addition amount was 0.075 wt%. Some voids and cracks were formed in solder joints after reflowing and thermal aging. At this time, the IMC growth activation energies of Sn solder is 33.256 kJ/mol, and that of Sn-0.075CNTs composite solder is 58.19 kJ/mol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    N. Odashima, O. Minho, M. Kajihara et al., Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    M. Zhao, L. Zhang, Z.Q. Liu et al., Structure and properties of Sn–Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20(1), 421–444 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    K.K. Xu, L. Zhang, L. Sun et al., The influence of carbon nanotubes on the properties of Sn solder. Mater. Trans. 61(3), 718–722 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    J. Mittal, K. Lin, Diffusion of elements during reflow aging of Sn–Zn solder in liquid state on Ni/Cu substrate theoretical and experimental study. Soldering Surf. Mount Technol. 30(3), 137–144 (2018)

    Article  Google Scholar 

  5. 5.

    L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 31(3), 2466–2480 (2020)

    CAS  Google Scholar 

  6. 6.

    F. Peng, W. Liu, Y. Huang et al., Effect of stearic acid coating on anti-oxidation property of Sn–Ag–Cu solder powder. Solder. Surf. Mount Technol. 31(1), 68–74 (2019)

    Article  Google Scholar 

  7. 7.

    H. Chen, T. Chou, C. Fleshman et al., Investigating the effect of Ag content on mechanical properties of Sn–Ag–Cu Micro-BGA joints. J. Electron. Mater. 48(10), 6866–6871 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    M.Y. Xiong, L. Zhang, H. Peng et al., Stress analysis and structural optimization of 3D IC package based on the Taguchi method. Soldering Surf. Mount Technolo. 32(1), 42–47 (2020)

    Article  Google Scholar 

  10. 10.

    L. Zhang, Z.Q. Liu, S.W. Chen et al., Materials, processing and reliability of low temperature bonding in 3D chip stacking. J. Alloy. Compd. 750, 980–995 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    L. Sun, M.H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloy. Compd. 786, 677–687 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    M.Y. Xiong, L. Zhang, L. Sun et al., Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints. Vacuum 167, 301–306 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    T. Hu, Y. Li, Y.C. Chan et al., Effect of nano Al2O3 particles doping on electromigration and mechanical properties of Sn-58Bi solder joints. Microelectron. Reliab. 55(8), 1226–1233 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    C. Lee, K.D. Min, H.J. Park et al., Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi Solder. Electron. Mater. Lett. 15(6), 693–701 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    R.M. Shalaby, H. Elzanaty, Effect of nano-Al2O3 particles on the microstructure and mechanical performance of melt-spun process Sn-3.5Ag composite solder. J. Mater. Sci. 31, 5907–5913 (2020)

    CAS  Google Scholar 

  16. 16.

    M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J. Alloy. Compd. 679, 18–25 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn–Ag–Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54(2), 1741–1768 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    Mookam N, Tunthawiroon P, Kanlayasiri K. Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering. 9th International Conference on Mechatronics and Manufacturing. 2018, 361:012008

  19. 19.

    N. Mookam, K. Kanlayasiri, Evolution of intermetallic compounds between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate during thermal aging. J. Mater. Sci. Technol. 28(1), 53–59 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    S. Furtauer, D. Li, D.M. Cupid et al., The Cu–Sn phase diagram, Part I: new experimental results. Intermetallics 16, 142–147 (2013)

    Article  Google Scholar 

  21. 21.

    J. Bang, D. Yu, Y. Ko et al., Intermetallic compound growth between Sn–Cu–Cr lead-free solder and Cu substrate. Microelectron. Reliab. 99(99), 62–73 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007), p. 117

    Google Scholar 

  23. 23.

    L. Tsao, S.Y. Chang, C.I. Lee et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Design 31(10), 4831–4835 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    D. Ma, W.D. Wang, S.K. Lahiri, Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow. J. Appl. Phys. 91(5), 3312 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    J. Bang, D. Yu, Y. Ko et al., Intermetallic compound formation and mechanical property of Sn-Cu-xCr/Cu lead-free solder joint[J]. J. Alloy. Compd. 728, 992–1001 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)

    CAS  Article  Google Scholar 

  27. 27.

    J. Yoon, B. Noh, B. Kim et al., Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints. J. Alloy. Compd. 486(1), 142–147 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    J.W. Yoon, Y.H. Lee, D.G. Kim et al., Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate. J. Alloy. Compd. 381(1–2), 151–157 (2004)

    CAS  Article  Google Scholar 

  29. 29.

    L.C. Tsao, Suppressing effect of 0.5 wt% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 509(33), 8441–8448 (2011)

    CAS  Article  Google Scholar 

Download references


The present work was carried out with the support of the Key project of State Key Laboratory of Advanced Welding and Joining (Grant No. AWJ-19Z04).

Author information



Corresponding author

Correspondence to Liang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Kk., Zhang, L. & Jiang, N. Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing. J Mater Sci: Mater Electron 32, 2655–2666 (2021). https://doi.org/10.1007/s10854-020-04755-z

Download citation