High-performance lead free piezoelectric Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based flexible nanogenerator as energy harvester and self-powered vibration sensor

Abstract

Efficient, eco-friendly, flexible and high energy output piezoelectric nanogenerator is very much desirable for the development of multifunctional miniaturize devices and sensors. Aspect ratio ~ 102 and boosted energy harvesting attributes of lead-free piezoelectric Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers have considered for fabricating a flexible nanogenerator. The nanofibers have been synthesized using sol–gel and followed by electro-spinning process. The sintering temperature optimizes at 700 °C to obtain the best quality nanofibers having a diameter in the range from 67 to 132 nm. Rietveld refinement analysis of the X-ray diffraction pattern revealed the substitution of yttrium 30% on titanium (B-site) and 10% on barium (A-site) sites of ABO3 structure. Efforts have made for the development of Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based nanogenerator using a simple, cost-effective and scalable approach. The open-circuit voltage (peak-peak) ~ 25 V and the maximum power density ~ 6.5 mW/cm3 have obtained from the developed nanogenerator. Further, the performance of the Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based nanogenerator is investigated as a frequency sensor by measuring output voltage as a function of frequency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    B. Kumar, S.W. Kim, Nano Energy 1, 342 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    S. Xu, Y. Qin, X. Chen, Y. Wei, R. Yang, Z.L. Wang, Nat. Nanotechnol. 5, 366 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    G. Zhu, R. Yang, S. Wang, Z.L. Wang, Nano Lett. 10, 3151 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    S.H. Shin, Y.H. Kim, M.H. Lee, J.Y. Jung, J. Nah, ACS Nano 8, 2766 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    J. Yan, Y.G. Jeong, ACS Appl. Mater. Interfaces 8, 15700 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    X. Chen, S. Xu, N. Yao, Y. Shi, Nano Lett. 10, 2133 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, F. Qin, Z. Wang, Nano Lett. 13, 91 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    W.S. Jung, Y.H. Do, M.G. Kang, C.Y. Kang, Curr. Appl. Phys. 13, S131 (2013)

    Article  Google Scholar 

  9. 9.

    H.B. Kang, J. Chang, K. Koh, L. Lin, Y.S. Cho, ACS Appl. Mater. Interfaces 6, 10576 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    S. Cavaliere, S. Subianto, I. Savych, J.D. Jones, J. Roziere, Energy Environ. Sci. 4, 4761 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    X. Chen, S. Guo, J. Li, G. Zhang, M. Lu, Y. Shi, Sens. Actuators A 199, 372 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    X.P. Xiao, P. Hu, Z. Xiong, H. Hue, Q. Lu, H. Ye, G. Zhang, Key Eng. Mater. 512–515, 1359 (2012)

    Article  CAS  Google Scholar 

  13. 13.

    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Zhao, H. Fan, X. Ren, C. Long, G. Liu, Z. Liu, J. Mater. Chem. C 4, 7324 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    R. Ganeshkumar, C.W. Cheah, R. Xu, S.G. Kim, R. Zhao, Appl. Phys. Lett. 111, 013905 (2017)

    Article  CAS  Google Scholar 

  16. 16.

    K.S. Chary, H.S. Panda, C.D. Prasad, Ind. Eng. Chem. Res. 56, 10335 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, J. Nanomater. 6, 129 (2016)

    Article  CAS  Google Scholar 

  18. 18.

    J.J. Santiago-Aviles, Y. Wang, R. Furlan, I. Ramos, Appl. Phys. A 78, 1043 (2004)

    Article  CAS  Google Scholar 

  19. 19.

    H. Li, H. Wu, D. Lin, W. Pan, J. Am. Ceram. Soc. 92, 2162 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    S.H. Ji, H.J. Cho, H.Y. Jeong, J.H. Paik, D.J. Yun, Sens. Actuators A 247, 316 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    S.H. Ji, S.J. Yun, Nanomaterials 8, 206 (2018)

    Article  CAS  Google Scholar 

  22. 22.

    H. Luo, J. Roscow, X. Zhou, S. Chen, X. Han, K. Zhou, D. Zhang, R.C. Bowen, J. Mater. Chem. A 5, 7091 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    CAS  Article  Google Scholar 

  24. 24.

    Q. Yang, D. Wang, M. Zhang, T. Gao, H. Xue, Z. Wang, Z. Xiong, J. Alloys Compd. 688, 1066 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    M. Chen, Z. Xu, R. Chu, Z. Wang, S. Gao, G. Yu, W. Li, S. Gong, G. Li, Mater. Res. Bull. 9, 305 (2014)

    Article  CAS  Google Scholar 

  26. 26.

    H.J. Jeong, M.G. Park, H.Y. Han, J. Electroceram. 13, 805 (2004)

    CAS  Article  Google Scholar 

  27. 27.

    J.K. Park, H.C. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim, K.H. Hur, J. Eur. Ceram. Soc. 29, 1735 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    L.A. Xue, Y. Chen, R.J. Brook, Mater. Sci. Eng. 1, 193 (1988)

    Article  Google Scholar 

  29. 29.

    S. Fuentes, F. Cespedes, P. Munoz, E. Chavez, L.P. Campos, J. Chil. Chem. Soc. 58, 2077 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    B. Wang, L.D. Zhanga, L. Zhangb, Y. Yanb, S.L. Zhang, Thin Solid Films 354, 262 (1999)

    CAS  Article  Google Scholar 

  31. 31.

    J. Zhu, W. Han, H. Zhang, Z. Yuan, X. Wang, L. Li, C. Jin, J. Appl. Phys. 112, 064110 (2012)

    Article  CAS  Google Scholar 

  32. 32.

    X. Wang, X. Deng, H. Wen, L. Li, Appl. Phys. Lett. 89, 162902 (2006)

    Article  CAS  Google Scholar 

  33. 33.

    U.Y. Hwang, H.S. Park, K.K. Koo, Ind. Eng. Chem. Res. 43, 728 (2004)

    CAS  Article  Google Scholar 

  34. 34.

    S. Bojja, SCh. Vani, K.D. Devi, B.M.V. Rao, R. Cheedalla, Am. J. Mater. Sci. 2, 5 (2012)

    Article  Google Scholar 

  35. 35.

    L. Gu, D. Zhou, J.C. Cheng, Sensors 16, 833 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    Z. Min, G. Tao, W. Jianshu, L. Jianju, Q. Yingqiang, X. Hao, S. Zhan, Z. Yang, X. Zhoxian, C. Lifu, Nanoenergy 13, 298 (2015)

    Google Scholar 

  37. 37.

    L. Jie, Y. Bin, L. Lijun, W. Xiaolin, L. Xiuyan, C. Xiang, L. Jingquan, Sens. Actuators A 303, 111796 (2020)

    Article  CAS  Google Scholar 

  38. 38.

    S. Bairagi, W.S. Ali, Nano Energy 198, 117385 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    K.S. Chary, K. Viresh, H.S. Panda, C.D. Prasad, J. Austr. Ceram. Soc. 56, 1107 (2020)

    CAS  Article  Google Scholar 

  40. 40.

    S. Bairagi, W.S. Ali, Energy Technol. 7, 1900538 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    Y. Meng, G. Liu, A. Liu, Z. Guo, W. Sun, F. Shan, ACS Appl. Mater. Interfaces 9, 10805 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    A.M. Luiza, S.A. Rafaela, H.C. Mattoso, S.C. Daniel, ACS Appl. Nanomater. 7, 4026 (2019)

    Google Scholar 

  43. 43.

    K. Zhang, Z.L. Wang, Y. Yang, ACS Nano 10, 4728 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the director and all members of the ceramic division, Naval Materials Research Laboratory for their support. Also, the authors thank the vice-chancellor, DIAT for the encouragement.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Durga Prasad Chadalapaka or Himanshu Sekhar Panda.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1444 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chary, K.S., Chadalapaka, D., Kumbhar, C.S. et al. High-performance lead free piezoelectric Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based flexible nanogenerator as energy harvester and self-powered vibration sensor. J Mater Sci: Mater Electron 32, 113–124 (2021). https://doi.org/10.1007/s10854-020-04710-y

Download citation