Skip to main content
Log in

Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, undoped and Nd2O3-doped TeO2–V2O5–B2O3 oxide glasses were synthesized and their characterizations were performed. Physical parameters belonging to the glass series having four samples prepared with melt-quenching technique were determined and the changes in structural, thermal, and optical properties with Nd2O3 doping were examined. Density, molar volume, molar refractivity, and metallization criterion values were calculated as physical parameters. Structural properties were examined with XRD and FTIR, and as a result of these examinations, the structure was found to be amorphous and the glass network was observed to consist of TeO4, TeO3, BO3, and BO4 structural units with the help of absorption spectrum within the region of 400–1500 cm−1, and it was also understood that conversions occurred in these structural units with doping. It was determined with DSC thermograms that changes occurred in thermal data with Nd2O3 doping. Transmittance and absorption spectra were used in optical characterization. Seven characteristic absorption bands were found in this glass structure belonging to Nd within the visible region. Moreover, optical band gap, Urbach energy, and refractive index values according to absorption edge were calculated and changes in these novel synthesized glasses due to doping were examined and commented in detail. Data arising as a result of glass characterization were concluded to be due to structural changes in the glass network depending upon the Nd2O3 concentration in glasses and Nd2O3 was present within the structure as the modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. El-Mallawany, J. Appl. Phys. 72, 1774 (1992)

    CAS  Google Scholar 

  2. A. Berthereau, Y.L. Luyer, R. Olazcuaga, G.L. Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, A. Ducasse, Mater. Res. Bull. 29(9), 933–941 (1994)

    CAS  Google Scholar 

  3. J. Zhang, J. Qiu, Y. Kawamoto, Mater. Lett. 55, 77–82 (2002)

    CAS  Google Scholar 

  4. J. Wang, E. Vogel, E. Snitzer, Opt. Mater. 3, 187–203 (1994)

    CAS  Google Scholar 

  5. C. Chryssou, F.D. Pasquale, C. Pitt, IEEE J. Sel. Top. Quantum Electron. 6, 114–121 (2000)

    CAS  Google Scholar 

  6. R.K. Ramamoorthy, A.K. Bhatnagar, J. Alloys Compd. 623, 49–54 (2015)

    CAS  Google Scholar 

  7. M.A. Sidkey, R. El-Mallawany, R.I. Nakhla, A. Abd El-Moneim, J. Non-Cryst. Solids 215, 75–82 (1997)

    CAS  Google Scholar 

  8. Y.B. Saddeek, Mater. Chem. Phys. 91, 146–153 (2005)

    CAS  Google Scholar 

  9. S. Chakraborty, H. Satou, H. Sakata, J. Appl. Phys. 82(11), 5520 (1997)

    CAS  Google Scholar 

  10. M. Prashant Kumar, T. Sankarappa, Solid State Ion 178, 1719–1724 (2008)

    Google Scholar 

  11. R. El-Mallawany, J. Mater. Sci. 6, 1–3 (1995)

    CAS  Google Scholar 

  12. R.N. Hampton, W. Hong, G.A. Saunders, R. El-Mallawany, Phys. Chem. Glasses 29(3), 100–105 (1988)

    CAS  Google Scholar 

  13. R. El-Mallawany, J. Mater. Res. 7(1), 224–228 (1992)

    CAS  Google Scholar 

  14. M.I. Sayyed, R. El-Mallawany, Mater. Chem. Phys. 201, 50–56 (2017)

    CAS  Google Scholar 

  15. Y. Elmahroug, M. Almatari, M.I. Sayyed, M.G. Dong, H.O. Tekin, J. Non-Cryst. Solids 499, 32–40 (2018)

    CAS  Google Scholar 

  16. S.A.M. Issa, A.M. Ali, G. Susoy, H.O. Tekin, Y.B. Saddeek, R. Elsaman, H.H. Somaily, H. Algarni, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.05.107

    Article  Google Scholar 

  17. U.G. Issever, G. Kilic, M. Peker, T. Unaldi, A.S. Aybek, J. Mater. Sci. 30, 15156–15167 (2019)

    CAS  Google Scholar 

  18. R. El-Mallawany, A. Abdel-Kader, M. El-Hawary, N. El-Khoshkhany, EPJ Appl. Phys. 19(3), 165–172 (2002)

    CAS  Google Scholar 

  19. R.N. Sinclair, A.C. Wright, B. Bachra, Y.B. Dimitriev, V.V. Dimitrov, M.G. Arnaudov, J. Non-Cryst. Solids 232–234, 38–43 (1998)

    Google Scholar 

  20. G. Swapna, M. Upender, Prasad, J. Taibah Univ. Sci. 11(4), 583–592 (2017)

    Google Scholar 

  21. Y.B. Saddeek, R. El-Mallawany, H. Afifi, J. Non-Cryst. Solids 417–418, 28–33 (2015)

    Google Scholar 

  22. I. Kashif, A.A. El-Maboud, A. Ratep, Results Phys. 4, 1–5 (2014)

    Google Scholar 

  23. K. Nanda, N. Berwal, R.S. Kundu, R. Punia, N. Kishore, J. Mol. Struct. 1088, 147–154 (2015)

    CAS  Google Scholar 

  24. M.R. Sahar, K. Sulhadi, M.S. Rohani, J. Non-Cryst. Solids 354(12–13), 1179–1181 (2008)

    CAS  Google Scholar 

  25. V. Kamalaker, G. Upender, C. Ramesh, V.C. Mouli, Spectrochim. Acta A 89, 149–154 (2012)

    CAS  Google Scholar 

  26. N.A.M. Jan, Md.R. Sahar, S.K. Ghoshal, R. Ariffin, M.S. Rohani, K. Hamzah, Adv. Mater. Res. 895, 395–399 (2014)

    CAS  Google Scholar 

  27. K. Azman, W.A.W. Razali, H. Azhan, M.R. Sahar, Adv. Mater. Res. 501, 121–125 (2012)

    CAS  Google Scholar 

  28. B. Padlyak, W. Ryba-Romanowski, R. Lisiecki, Opt. Appl. 38, 189–202 (2008)

    CAS  Google Scholar 

  29. F.B. Costa, K. Yukimitu, L.A.O. Nunes, L.H.C. Andrade, S.M. Lima, J.C.S. Moraes, Mater. Res. 18(2), 2–7 (2015)

    CAS  Google Scholar 

  30. J.D.M. Dias, G.H.A. Melo, T.A. Lodi, J.O. Carvalho, P.F. Façanha, M.J. Filho, A. Barboza, F. Steimacher, Pedrochi, J. Rare Earths 34(5), 521–528 (2016)

    CAS  Google Scholar 

  31. N.A.M. Jan, M.R. Sahar, S. Sulhadi, R. El-Mallawany, J. Non-Cryst. Solids 522, 119566 (2019)

    CAS  Google Scholar 

  32. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, R. El-Mallawany, Mater. Chem. Phys. 236, 121812 (2019)

    CAS  Google Scholar 

  33. V. Dimitrov, T. Komatsu, J. Non-Cryst. Solids 249, 160–179 (1999)

    CAS  Google Scholar 

  34. M. Abdel-Baki, F. El-Diasty, F.A.A. Wahab, Opt. Commun. 261, 65–70 (2006)

    CAS  Google Scholar 

  35. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Results Phys. 7, 581–589 (2017)

    Google Scholar 

  36. N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, J. Mol. Struct. 1127, 636–644 (2017)

    CAS  Google Scholar 

  37. G. Kilic, U.G. Issever, E. Ilik, J. Mater. Sci.: Mater. Electron. 30, 8920–8930 (2019)

    CAS  Google Scholar 

  38. D. Munoz-Martin, M.A. Villegas, J. Gonzalo, J.M. Fernandez-Navarro, J. Eur. Ceram. Soc. 29, 2903–2913 (2009)

    CAS  Google Scholar 

  39. R. Yuvakkumar, S.I. Hong, J Solgel Sci Technol 73, 511–517 (2015)

    CAS  Google Scholar 

  40. S. Rada, E. Culea, M. Rada, P. Pascuta, V. Maties, J. Mater. Sci. 44, 3235–3240 (2009)

    CAS  Google Scholar 

  41. S. Rada, M. Rada, E. Culea, Spectrochim. Acta A 75, 846–851 (2010)

    CAS  Google Scholar 

  42. S. Rada, V. Dan, M. Rada, E. Culea, J. Non-Cryst. Solids 356, 474–479 (2010)

    CAS  Google Scholar 

  43. S. Rada, M. Culea, E. Culea, J. Non-Cryst. Solids 354, 5491–5495 (2008)

    CAS  Google Scholar 

  44. Y.B. Saddeek, Philos. Mag. 89, 2305–2320 (2009)

    CAS  Google Scholar 

  45. A. Kaur, A. Khanna, V.G. Sathe, F. Gonzalez, B. Ortiz, Phase Transit. 86, 598 (2013)

    CAS  Google Scholar 

  46. E. Ilik, G. Kilic, U.G. Issever, J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03432-5

    Article  Google Scholar 

  47. G. Kilic, Adıyaman Univ. J. Sci. (2020). https://doi.org/10.37094/adyujsci.678938

    Article  Google Scholar 

  48. S. Tabanli, G. Bilir, G. Eryurek, J. Rare Earths 36(2), 170–178 (2018)

    CAS  Google Scholar 

  49. M.F. Faznny, M.K. Halimah, M.N. Azla, J. Optoelectron. Biomed. Mater. 8(2), 49–59 (2016)

    Google Scholar 

  50. C. Eevon, M.K. Halimah, M.N. Azlan, R. El-Mallawany, S.L. Hii, Mater. Sci. 37(4), 517–525 (2019)

    CAS  Google Scholar 

  51. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, E. Ilik, G. Kilic, J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03440-5

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank U.Gökhan İssever, PhD for his help in synthesis and shaping of samples of this research and also for taking some of the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Kilic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, G. Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization. J Mater Sci: Mater Electron 31, 12892–12902 (2020). https://doi.org/10.1007/s10854-020-03842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03842-5

Navigation