Synthesis and characterization of rare-earth ion-based double perovskite: Gd2CoMnO6

Abstract

The double perovskite gadolinium cobalt manganate (Gd2CoMnO6) ceramic material was prepared via mixed oxide route. The preliminary X-ray structural study reveals that the material was found in monoclinic structure. We have found the small voids with almost uniform distribution of grains from the microstructural analysis. Analysis of the dielectric and electrical data, collected in a wide range of frequency range (1 kHz–1 MHz) and temperature (25–500 °C), has provided many interesting results. We have discussed frequency dependence dielectric parameter by Maxwell–Wagner model. We found that the room temperature dielectric constant at 1 kHz frequency is 300 and tangent loss is nearly equal to 2. A dielectric anomaly (ferroelectric–paraelectric phase transition) was found in the temperature dependence of dielectric study. The study of diffuse phase transition exhibits the existence of relaxation process in the compound. In the Nyquist plots, both grain and grain boundary effects are observed which is characterized by (RQC) and (RQC)(RC) circuits. As the resistance decreases with increase of temperature, the material shows the semiconductor behavior. The existence of non-Debye type of relaxation mechanism in the material is confirmed by the depression angle. The frequency dependence of electric conductivity has been studied using the Jonscher’s power law, in which the frequency exponent n (< 1) signifies the translational motion with involvement of an intuitive hopping of charge carriers. The leakage current and conduction mechanism follow the space charge-limited conduction phenomenon. The low leakage current density may be suitable for high-temperature applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    R. Gao, Q. Zhang, Z. Xu, Z. Wang, W. Cai, G. Chen, X. Deng, X. Cao, X. Luoa, C. Fu, Nanoscale 10, 11750 (2018)

    CAS  Google Scholar 

  2. 2.

    X. Gao, L. Li, D. Zhang, X. Wang, J. Jian, Z. Heb, H. Wang, Nanoscale 12, 5914 (2020)

    CAS  Google Scholar 

  3. 3.

    A.W. Sleight, R. Ward, J. Am. Chem. Soc. 83, 1088 (1961)

    CAS  Google Scholar 

  4. 4.

    J. Longo, R. Ward, J. Am. Chem. Soc. 83, 2816 (1961)

    Google Scholar 

  5. 5.

    C. Ritter, M.R. Ibarra, L. Morellon, J. Blasco, J. Garcıa, J.M. De Teresa, J. Phys.: Condens. Matter 12, 8295 (2000)

    CAS  Google Scholar 

  6. 6.

    N. Masta, D. Triyonoa, H. Laysandra, AIP Conf. Proc. 1862, 030036 (2017)

    Google Scholar 

  7. 7.

    W.Z. Yanga, X.Q. Liua, H.J. Zhaoa, X.M. Chena, J. Magn. Magn. Mater. 371, 52 (2014)

    Google Scholar 

  8. 8.

    R.X. Silva, R.M. Almeida, R.L. Moreira, R. Paniago, M.V.S. Rezende, C.W.A. Paschoal, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2018.11.168

    Article  Google Scholar 

  9. 9.

    J.S. Zhou, H.Q. Yin, J.B. Goodenough, Phys. Rev. B: Condens. Matter 63, 184423 (2001)

    Google Scholar 

  10. 10.

    J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Phys. Rev. 124, 373–384 (1961)

    CAS  Google Scholar 

  11. 11.

    G. Blasse, J. Phys. Chem. Solids 26, 1969 (1965)

    CAS  Google Scholar 

  12. 12.

    Y.Q. Lin, X.M. Chen, X.Q. Liu, Solid State Commun. 149, 784 (2009)

    CAS  Google Scholar 

  13. 13.

    J.K. Murthy, K.D. Chandrasekhar, S. Mahana, D. Topwal, A. Venimadhav, J. Phys. D: Appl. Phys. 48, 355001 (2015)

    Google Scholar 

  14. 14.

    W.Z. Yang, X.Q. Liu, H.J. Zhao, Y.Q. Lin, X.M. Chen, J. Appl. Phys. 112, 064104 (2012)

    Google Scholar 

  15. 15.

    R.I. Dass, J.B. Goodenough, Phys. Rev. B. 67, 014401 (2003)

    Google Scholar 

  16. 16.

    Y. Shimakawa, M. Azuma, N. Ichikawa, Mterials 4153 (2011)

  17. 17.

    A.K. Kundu, Magnetic Perovskites: Synthesis, Structure and Physical Properties (Springer, New York, 2003)

    Google Scholar 

  18. 18.

    Y. Xu, M. Meier, P. Das, M. Koblischka, U. Hartmann, Cryst. Eng. 5, 383–389 (2002)

    CAS  Google Scholar 

  19. 19.

    N. Pradhani, P.K. Mahapatra, R.N.P. Choudhary, J. Phys.: Mater. 1, 015007 (2018)

    Google Scholar 

  20. 20.

    V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993 (2018)

    CAS  Google Scholar 

  21. 21.

    M.A. Dar, K. Majid, K.M. Batoo, R.K. Kotnala, J. Alloys Compd. 632, 307–320 (2015)

    Google Scholar 

  22. 22.

    K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 27, 11211 (2016)

    CAS  Google Scholar 

  23. 23.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 17344 (2017)

    CAS  Google Scholar 

  24. 24.

    R. Gaoa, Q. Zhangc, Z. Xud, Z. Wanga, G. Chena, X. Denga, C. Fua, W. Caia, Composites B 166, 204 (2019)

    Google Scholar 

  25. 25.

    A. Anshul, R.K. Kotnala, R.P. Aloysius, A. Gupta, G.A. Basheeda, J. Appl. Phys. 115, 084106 (2014)

    Google Scholar 

  26. 26.

    A. Ciucivara, B. Sahu, L. Kleinman, Phys. Rev. B 76, 064412 (2007)

    Google Scholar 

  27. 27.

    H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, J. Appl. Phys. 105, 124104 (2009)

  28. 28.

    B. Tilak, Am. J. Mater. Sci. 2, 110 (2012)

    Google Scholar 

  29. 29.

    N. Kumar, A. Ghosh, R.N.P. Choudhary, Mater. Chem. Phys. 130, 381 (2011)

    CAS  Google Scholar 

  30. 30.

    P.R. Das, L. Biswal, B. Behera, R.N.P. Choudhary, Mater. Res. Bull. 44, 1214 (2009)

    CAS  Google Scholar 

  31. 31.

    O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl Phys. 97, 084107 (2005)

    Google Scholar 

  32. 32.

    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express. 3, 065017 (2016)

    Google Scholar 

  33. 33.

    D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757–6762 (2010)

    CAS  Google Scholar 

  34. 34.

    H. Borkar, M. Tomar, V. Gupta: A. Kumar Phys. Express (2014)

  35. 35.

    S. Praharaj, D. Rout, Mater. Sci. Eng. 149, 012181 (2016)

    Google Scholar 

  36. 36.

    B. Roling, J. Non Cryst. Solids 244, 34 (1999)

    CAS  Google Scholar 

  37. 37.

    J.R. Macdonald: ed. 1, Wiley, New York (1987)

  38. 38.

    J.F. Mccann, S.P.S. Badwal: 129, 551 (1982)

  39. 39.

    M.L. Stanguennec, S.R. Elliott, Solid State Ion. 73, 199 (1994)

    Google Scholar 

  40. 40.

    R. Das, R.N.P. Choudhary, Solid State Sci. 87, 1 (2019)

    CAS  Google Scholar 

  41. 41.

    D.P. Almond, A.R. West, Solid State Ion. 11, 57 (1983)

    CAS  Google Scholar 

  42. 42.

    S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 15928 (2017)

    CAS  Google Scholar 

  43. 43.

    S. Kumar, J. Pal, S. Kaur, P.S. Malhi, M. Singh, P.D. Babu, A. Singh, J. Asian Ceram. Soc. 7, 133 (2019)

    Google Scholar 

  44. 44.

    Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, AIP Adv. 3, 032146 (2013)

    Google Scholar 

  45. 45.

    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloy. Compd. 750, 507 (2018)

    CAS  Google Scholar 

  46. 46.

    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    CAS  Google Scholar 

  47. 47.

    R. Padhee, R.P. Das, B.N. Parida, R.N.P. Choudhary, J. Phys. Chem. Solids 74, 377 (2013)

    CAS  Google Scholar 

  48. 48.

    R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloy. Compd. 509, 6388 (2011)

    CAS  Google Scholar 

  49. 49.

    S. Gupta, M. Tomar, V. Gupta, J. Exp. Nanosci. 8, 261 (2013)

    CAS  Google Scholar 

  50. 50.

    A.Z. Simões, L.S. Cavalcante, F. Mourac, E. Longo, J.A. Varela, J. Alloys Compd. 509, 5326 (2011)

    Google Scholar 

  51. 51.

    X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys. 94, 5163 (2003)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rutuparna Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, R., Choudhary, R.N.P. Synthesis and characterization of rare-earth ion-based double perovskite: Gd2CoMnO6. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03826-5

Download citation