Harvesting multiple optical energies using ZnPc/CdS-QDs hybrid organic/inorganic semiconductors


The substitution of inorganic-based electronics by organic semiconducting materials is a current trend in science and technology for its economic and environmental benefits, but it is hardly progressing. The reason thereof is the lack of improved efficiency, which affects the organic semiconductors performance in many devices when compared with their inorganic-based counterparts. A recent peculiar idea of using heterostructures consisting of both organic and inorganic materials has become an auspicious solution. To this end, the ability to synthesize hybrid organic/inorganic semiconductors targeting different applications is of utmost importance. We hereby present a successful simple route to synthesize a stable homogenous hybrid organic/inorganic system consisting of zinc phthalocyanine (ZnPc) oligomers as the organic base, and Cadmium sulfide quantum dots (CdS QDs) as the inorganic part. The structural and optical characterizations of the prepared samples demonstrate new optical absorption transitions for the hybrids in the red region belonging to the ZnPc molecules, besides the original blue band absorption of the CdS QDs. This is combined with a reduced radiative emission of the whole system. Thus, the hybrid materials are capable of harvesting multiple frequencies within the visible spectra more efficiently than pure QDs, while relaxing non-radiatively rather than by emitting electrons or heat. These qualities favor the use of these hybrids as solar cell or thermal-power active materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    R. Viswanatha, D.D. Sarma, Nanomaterials Chemistry: Recent Developments and New Directions (Wiley-VcH, Germany, 2007)

    Google Scholar 

  2. 2.

    M. Grundmann, Nano-optoelectronics: Concepts (Springer-Verlag, New York, Physics and Devices, 2002)

    Google Scholar 

  3. 3.

    A.L. Stroyuk, A.I. Kryukov, S.Y. Kuchmii, V.D. Pokhodenko, Quantum size effects in the photonics of semiconductor nanoparticles. Theor. Exp. Chem. 41(2), 67–91 (2005). https://doi.org/10.1007/s11237-005-0025-9

    CAS  Article  Google Scholar 

  4. 4.

    Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009). https://doi.org/10.1002/adma.200803827

    CAS  Article  Google Scholar 

  5. 5.

    W. Brutting, Physics of Organic Semiconductors, 2nd edn. (Wiley, New York, 2012)

    Google Scholar 

  6. 6.

    M. Yamaguchia, T. Takamotob, K. Araki, Super high-efficiency multi-junction and concentrator solar cells. Sol. Energy Mater. Sol. C 90, 3068–3077 (2006). https://doi.org/10.1016/j.solmat.2006.06.028

    CAS  Article  Google Scholar 

  7. 7.

    A. Opitz, J. Wagner, W. Brütting, I. Salzmann, N. Koch, J. Manara, J. Pflaum, A. Hinderhofer, F. Schreiber, Charge separation at molecular donor-acceptor interfaces: correlation between morphology and solar cell performance. IEEE J. Sel. Top. Qunat. Electron. 16(6), 1707–1717 (2010). https://doi.org/10.1109/JSTQE.2010.2048096

    CAS  Article  Google Scholar 

  8. 8.

    P.J. Jadhav, A. Mohanty, J. Sussman, J. Lee, M.A. Baldo, Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11(4), 1495–1498 (2011). https://doi.org/10.1021/nl104202j

    CAS  Article  Google Scholar 

  9. 9.

    K. Yao, Ch Liu, Y. Chen, L. Chen, F. Li, K. Liu, R. Sun, P. Wanga, Ch Yang, Integration of light-harvesting complexes into the polymer bulk heterojunction P3HT/PCBM device for efficient photovoltaic cells. J. Mater. Chem. 22, 7342–7349 (2012). https://doi.org/10.1039/C2JM16616J

    CAS  Article  Google Scholar 

  10. 10.

    S. Honda, H. Ohkita, H. Bentena, Sh Ito, Multi-colored dyesensitization of polymer/fullerene bulk heterojunction solar cells. Chem. Commun. 46, 6596–6598 (2010). https://doi.org/10.1039/C0CC01787F

    CAS  Article  Google Scholar 

  11. 11.

    F. Yakuphanoglu, Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth. Met. 157, 859–862 (2007). https://doi.org/10.1016/j.synthmet.2007.08.012

    CAS  Article  Google Scholar 

  12. 12.

    Z. Yuan, J. Yu, N. Wang, Y. Jiang, A hybrid photodiode with planar heterojunction structure consisting of ZnO nanoparticles and CuPc thin film. Curr. App. Phys. 12, 1278–1282 (2012). https://doi.org/10.1016/j.cap.2012.03.011

    Article  Google Scholar 

  13. 13.

    B. Fluegel, Y. Zhang, A. Mascarenhas, X. Huang, J. Li, Electronic properties of hybrid organic–inorganic semiconductors. Phys. Rev. B 70, 205308 (2004). https://doi.org/10.1103/PhysRevB.70.205308

    CAS  Article  Google Scholar 

  14. 14.

    D. Savateeva, D. Melnikau, V. Lesnyak, N. Gaponik, Y.P. Rakovich, Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer. J. Mater. Chem. 22, 10816–10822 (2012). https://doi.org/10.1039/C2JM30917C

    CAS  Article  Google Scholar 

  15. 15.

    I. Papagiannouli, E. Maratou, I. Koutselas, S. Couris, Synthesis and characterization of the nonlinear optical properties of novel hybrid organic-inorganic semiconductor lead iodide quantum wells and dots. J. Phys. Chem. C 118, 2766–2775 (2014). https://doi.org/10.1021/jp409620w

    CAS  Article  Google Scholar 

  16. 16.

    Y. Zhou, M. Eck, M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ. Sci. 3, 1851–1864 (2010). https://doi.org/10.1039/C0EE00143K

    CAS  Article  Google Scholar 

  17. 17.

    T. Xu, Q. Qiao, Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy Environ. Sci. 4, 2700–2720 (2011). https://doi.org/10.1039/C0EE00632G

    CAS  Article  Google Scholar 

  18. 18.

    J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, Ch Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, MdK Nazeeruddin et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013). https://doi.org/10.1038/nphoton.2013.80

    CAS  Article  Google Scholar 

  19. 19.

    G. Beane, K. Boldt, N. Kirkwood, P. Mulvaney, Energy transfer between quantum dots and conjugated dye molecules. J. Phys. Chem. C 118, 18079–18086 (2014). https://doi.org/10.1021/jp502033d

    CAS  Article  Google Scholar 

  20. 20.

    L. Dworak, V.V. Matylitsky, T. Ren, Th Basché, J. Wachtveitl, Acceptor concentration dependence of Förster resonance energy transfer dynamics in dye-quantum dot complexes. J. Phys. Chem. C 118, 4396–4402 (2014). https://doi.org/10.1021/jp409807x

    CAS  Article  Google Scholar 

  21. 21.

    A. Gopi, S. Lingamoorthy, S. Soman, K. Yoosaf, R. Haridas, S. Das, Modulating FRET in organic-inorganic nanohybrids for light harvesting applications. J. Phys. Chem. C 120, 26569–26578 (2016). https://doi.org/10.1021/acs.jpcc.6b09867

    CAS  Article  Google Scholar 

  22. 22.

    D.M.N.M. Dissanayake, R.A. Hatton, T. Lutz, R.J. Curry, S.R.P. Silva, Charge transfer between acenes and PbS nanocrystals. Nanotechnology. 20, 195205 (2009). https://doi.org/10.1088/0957-4484/20/19/195205

    CAS  Article  Google Scholar 

  23. 23.

    S. Dayal, Y. Lou, A. Cristina, S. Samia, J.C. Berlin, M.E. Kenney, C. Burda, Observation of non-Förster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. J. Am. Chem. Soc. 128, 13974–13975 (2006). https://doi.org/10.1021/ja063415e

    CAS  Article  Google Scholar 

  24. 24.

    L. Li, J.F. Zhao, N. Won, H. Jin, S. Kim, J.Y. Chen, Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res. Lett. 7, 386 (2012). https://doi.org/10.1186/1556-276X-7-386

    Article  Google Scholar 

  25. 25.

    S. Mandal, M.G. Iglesias, M. Ince, T. Torres, N.V. Tkachenko, Photoinduced energy transfer in ZnCdSeS quantum dot-phthalocyanines hybrids. ACS Omega 3, 10048–10057 (2018). https://doi.org/10.1021/acsomega.8b01623

    CAS  Article  Google Scholar 

  26. 26.

    Ch Pal, L. Sosa-Vargas, J.J. Ojeda, A.K. Sharma, A.N. Cammidge, M.J. Cook, A.K. Ray, Charge transport in lead sulfide quantum dots/phthalocyanines hybrid nanocomposites. Org. Electron. 44, 132–143 (2017). https://doi.org/10.1016/j.orgel.2017.02.014

    CAS  Article  Google Scholar 

  27. 27.

    H. Karacuban, M. Lange, J. Schaffert, O. Weingart, Th Wagner, R. Möller, Substrate-induced symmetry reduction of CuPc on Cu(1 1 1): an LT-STM study. Surf. Sci. 603, L39–L43 (2009). https://doi.org/10.1016/j.susc.2009.01.029

    CAS  Article  Google Scholar 

  28. 28.

    H. Peisert, M. Knupfer, T. Schwieger, G.G. Fuentes, D. Olligs, J. Fink, Fluorination of copper phthalocyanines: electronic structure and interface properties. J. Appl. Phys. 93, 9683 (2003). https://doi.org/10.1063/1.1577223

    CAS  Article  Google Scholar 

  29. 29.

    X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998). https://doi.org/10.1021/ja9805425

    CAS  Article  Google Scholar 

  30. 30.

    M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Synthesis and structural characterization of CdS nanoparticles. Physica E 41, 1457–1465 (2009). https://doi.org/10.1016/j.physe.2009.04.020

    CAS  Article  Google Scholar 

  31. 31.

    YuA Nitsuk, M.I. Kiose, YuF Vaksman, V.A. Smyntyna, I.R. Yatsunskyi, Optical properties of CdS nanocrystals doped with zinc and copper. Semiconductors 53(3), 361–367 (2019). https://doi.org/10.1134/S1063782619030138

    CAS  Article  Google Scholar 

  32. 32.

    F. Ghani, J. Kristen, H. Riegler, Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 57, 439–449 (2012). https://doi.org/10.1021/je2010215

    CAS  Article  Google Scholar 

  33. 33.

    L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983). https://doi.org/10.1063/1.445676

    CAS  Article  Google Scholar 

  34. 34.

    values from: Berger, L. I. Semiconductor materials; CRC Press, Boca Raton, 1997.

  35. 35.

    CdS ICCD card no. 01-0647

  36. 36.

    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992)

    Google Scholar 

  37. 37.

    F. Ibraheem, M.A. Mahdy, E.A. Mahmoud, J.E. Ortega, C. Rogero, I.A. Mahdy, A. El-Sayed, Tuning Paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots. J. Alloys Compd. 834, 155196 (2020)

    CAS  Article  Google Scholar 

  38. 38.

    ChQ Sun, L.K. Pan, Y.Q. Fu, B.K. Tay, S. Li, Size dependence of the 2p-level shift of nanosolid silicon. J. Phys. Chem. B 107, 5113–5115 (2003). https://doi.org/10.1021/jp0272015

    CAS  Article  Google Scholar 

  39. 39.

    S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 608, 129–134 (2013). https://doi.org/10.1016/j.susc.2012.09.024

    CAS  Article  Google Scholar 

  40. 40.

    S. Gowri, K. Gopinath, A. Arumugam, Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications. J. Photochem. Photobio. B: Bio. 180, 166–174 (2018). https://doi.org/10.1016/j.jphotobiol.2018.02.009

    CAS  Article  Google Scholar 

  41. 41.

    Z. Huang, B. Zheng, Sh Zhu, Y. Yao, Y. Ye, W. Lu, W. Chen, Photocatalytic activity of phthalocyanine-sensitized TiO2–SiO2 microparticles irradiated by visible light. Mater. Sci. Semicond Process. 25, 148–152 (2014). https://doi.org/10.1016/j.mssp.2013.10.014

    CAS  Article  Google Scholar 

  42. 42.

    J. Zhu, J. Zhang, J. Zhen, Ch Chen, J. Lu, S. Chen, Controllable synthesis of water-soluble luminescent CdxZn1−xS nanocrystals. Phys. B 405, 3452–3457 (2010). https://doi.org/10.1016/j.physb.2010.05.022

    CAS  Article  Google Scholar 

  43. 43.

    F. Ballipinar, A.C. Rastogi, High transimittance cadmium oxysulfide Cd(S, O) buffer layer grown by triton X-100 mediated chemical bath deposition for thin-film heterojunction solar cells. J. Appl. Phys. 121, 035302 (2017). https://doi.org/10.1063/1.4972964

    CAS  Article  Google Scholar 

  44. 44.

    W. Chen, Y. Xu, Z. Lin, Z. Wang, L. Lin, Formation, structure and fluorescence of CdS clusters in a mesoporous zeolite. Solid State Commun. 105, 129–134 (1998). https://doi.org/10.1016/S0038-1098(97)10075-8

    CAS  Article  Google Scholar 

  45. 45.

    H. Cao, G. Wang, S. Zhang, X. Zhang, D. Rabinovich, Growth and optical properties of Wurtzite-type CdS nanocrystals. Inorg. Chem. 45, 5103–5510 (2006). https://doi.org/10.1021/ic060440c

    CAS  Article  Google Scholar 

Download references


AE and IM are acknowledging the funding provided by the joint Russian Egyptian STDF Project No. 13756. AE is also grateful for the general administration of Missions at the Ministry of High Education in Egypt for funding the mission trip to Centro de Fisica de Materiales on 2016. CR and EO are grateful for funding from the Spanish Ministry of Economy and Competitiveness (Grant MAT2016-78293-C6-5-R, including FEDER funds) and the Interreg POCTEFA V-A Spain–France–Andorra Program (EFA 194/16/TNSI) partly financed by ERDF funds.

Author information




AES: Conceptualization, Investigation, Writing-Original Draft, Visualization, Supervision, Project administration. IAM: Resources, Review & Editing, Supervision. FI: Formal Analysis, Investigation. EAM: Resources, Supervision. JEO: Review & Editing, Supervision. CR: Resources, Review & Editing, Supervision.

Corresponding author

Correspondence to Afaf El-Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A., Mahdy, I.A., Ibraheem, F. et al. Harvesting multiple optical energies using ZnPc/CdS-QDs hybrid organic/inorganic semiconductors. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03825-6

Download citation